Full Environmental Assessment Form Part 1 - Project and Setting

Instructions for Completing Part 1

Part 1 is to be completed by the applicant or project sponsor. Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification.

Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information; indicate whether missing information does not exist, or is not reasonably available to the sponsor; and, when possible, generally describe work or studies which would be necessary to update or fully develop that information.

Applicants/sponsors must complete all items in Sections A & B. In Sections C, D & E, most items contain an initial question that must be answered either "Yes" or "No". If the answer to the initial question is "Yes", complete the sub-questions that follow. If the answer to the initial question is "No", proceed to the next question. Section F allows the project sponsor to identify and attach any additional information. Section G requires the name and signature of the applicant or project sponsor to verify that the information contained in Part 1 is accurate and complete.

A. Project and Applicant/Sponsor Information.

Name of Action or Project:			
Massena Green Hydrogen Facility			
Project Location (describe, and attach a general location map):			
Pontoon Bridge Road, Massena, NY 13662			
Brief Description of Proposed Action (include purpose or need):			
Air Products is proposing development of the Massena Green Hydrogen Facility to harvest up renewable power to be supplied by the New York Power Authority (NYPA). The hydrogen fac required electrical supply will be provided from the NYPA Hydro Preservation Power Program adjacent to the project site. The project will be using Quantity 4 electrolyzers rated at 20 meg hydrogen produced in the electrolyzers after being liquified will be distributed to customers foi trucks and buses. Included in construction are an electrolyzer building (300-foot by 175-foot), treatment building (204-foot by 310-foot), a control building (70-foot by 125-foot), and a termin constructed to house 4 liquid hydrogen storage tanks. A new electrical substation will be cons associated parking areas, access roads, emergency generators and pads, all necessary utilitie established around the facility as well.	ility involves production of liquid hyd and renewable market power throu awatts (MW) each to harvest renewa r their use as a fuel source mainly fo a compressor building (150-foot by nal building (75-foot by 155-foot). A structed to support this project. Inclu	Irogen by electrolysis. The igh NYPA's 345 kV line able hydrogen. The or the mobility sector for 200-foot), a water gravel pad will be ded in the project are	
Name of Applicant/Sponsor:	Telephone: 610-481-1416		
Air Products & Chemicals Inc., Attn: Jonathan Traynor, Project Manager	E-Mail: traynojn@airproducts.com		
Address: 1940 Air Products Boulevard			
City/PO: Allentown	State: PA	Zip Code: 18106	
Project Contact (if not same as sponsor; give name and title/role):	Telephone: 315-455-2000		
Bryan A. Bayer, C&S Engineers, Inc.	E-Mail: bbayer@cscos.com		
Address: 499 Col. Eileen Collins Boulevard			
City/PO:	State:	Zip Code:	
Syracuse	NY	13212	
Property Owner (if not same as sponsor):	Telephone:		
Tony C. Zappia E-Mail:			
Address: Pontoon Bridge Road			
City/PO: Massena	State: NY	Zip Code: ₁₃₆₆₂	

B. Government Approvals

B. Government Approvals, Funding, or Sponsorship.	("Funding	" includes grant	s, loans, ta	x relief, and an	y other forms	of financial
assistance.)						

,				
Government Entity	If Yes: Identify Agency and Approval(s) Required	Application Date (Actual or projected)		
a. City Counsel, Town Board, □Yes No or Village Board of Trustees				
b. City, Town or Village	Site Plan Approval	February 2023		
c. City, Town or ☐Yes☑No Village Zoning Board of Appeals				
d. Other local agencies ✓Yes□No	Town Building Permit	To be determined		
e. County agencies	County Health Department	To be determined		
f. Regional agencies ✓Yes□No	St. Lawrence County IDA	February 2023		
g. State agencies	NYSDEC WQC; SPDES (ind & construction), Article 15, Air Registration, NYSEDC	To be determined		
h. Federal agencies	USACE Section 404, Section 10	To be determined		
 i. Coastal Resources. <i>i.</i> Is the project site within a Coastal Area, or the waterfront area of a Designated Inland Waterway? <i>ii.</i> Is the project site located in a community with an approved Local Waterfront Revitalization Program? 				

□ Yes **Z**No

iii. Is the project site within a Coastal Erosion Hazard Area?

C. Planning and Zoning

C.1. Planning and zoning actions.	
 Will administrative or legislative adoption, or amendment of a plan, local law, ordinance, rule or regulation be the only approval(s) which must be granted to enable the proposed action to proceed? If Yes, complete sections C, F and G. If No, proceed to question C.2 and complete all remaining sections and questions in Part 1 	∐Yes ⊠ No
C.2. Adopted land use plans.	
a. Do any municipally- adopted (city, town, village or county) comprehensive land use plan(s) include the site where the proposed action would be located?	□Yes ☑ No
If Yes, does the comprehensive plan include specific recommendations for the site where the proposed action would be located?	□Yes□No
 b. Is the site of the proposed action within any local or regional special planning district (for example: Greenway; Brownfield Opportunity Area (BOA); designated State or Federal heritage area; watershed management plan; or other?) If Yes, identify the plan(s): 	∐Yes ⊠ No
 c. Is the proposed action located wholly or partially within an area listed in an adopted municipal open space plan, or an adopted municipal farmland protection plan? If Yes, identify the plan(s): 	⊘ Yes⊡No
St. La <u>wrence County Agricultural Development Plan</u>	

C.3. Zoning	
 a. Is the site of the proposed action located in a municipality with an adopted zoning law or ordinance. If Yes, what is the zoning classification(s) including any applicable overlay district? I - Industrial, NC - Neighborhood-Commercial 	⊘ Yes □ No
b. Is the use permitted or allowed by a special or conditional use permit?	∠ Yes No
 c. Is a zoning change requested as part of the proposed action? If Yes, <i>i</i>. What is the proposed new zoning for the site? 	☐ Yes Z No
C.4. Existing community services.	
a. In what school district is the project site located? Massena Central School District	
b. What police or other public protection forces serve the project site? Massena Police Department, St. Lawrence County Sheriff's Office, New York State Police, US Customs and Border Patrol	
c. Which fire protection and emergency medical services serve the project site? Massena Fire Department, Massena Memorial Hospital, Massena Rescue	
d. What parks serve the project site? Alcoa Field Recreation Park, Bushnell Park, Danforth Place Park, Massena Town Beach, North Main Street Park, Springs Park, Ro	obert Moses State Park

D. Project Details

D.1. Proposed and Potential Development

a. What is the general nature of the proposed action (e.g., residential, inc components)? Industrial	lustrial, commercial, recreational; if n	nixed, include all
b. a. Total acreage of the site of the proposed action?	84.40 acres	
b. Total acreage to be physically disturbed?	<u>72.46</u> acres	
c. Total acreage (project site and any contiguous properties) owned		
or controlled by the applicant or project sponsor?	<u>88.92</u> acres	
c. Is the proposed action an expansion of an existing project or use?		🗌 Yes 🖊 No
<i>i</i> . If Yes, what is the approximate percentage of the proposed expansion	on and identify the units (e.g., acres, n	niles, housing units,
square feet)? % Units:		
d. Is the proposed action a subdivision, or does it include a subdivision?		□Yes ∠ No
If Yes,		
<i>i</i> . Purpose or type of subdivision? (e.g., residential, industrial, commer	cial; if mixed, specify types)	
ii Is a shutten/someonysticn lawout menosod?		
<i>ii.</i> Is a cluster/conservation layout proposed? <i>iii.</i> Number of lots proposed?2		☑Yes □No
<i>iv.</i> Minimum and maximum proposed lot sizes? Minimum 6.76	Maximum 81.47	
e. Will the proposed action be constructed in multiple phases?	1	☐ Yes √ No
<i>i</i> . If No, anticipated period of construction:	<u> </u>	
<i>ii.</i> If Yes:		
• Total number of phases anticipated		
Anticipated commencement date of phase 1 (including demolit	·	
 Anticipated completion date of final phase 	monthyear	
• Generally describe connections or relationships among phases, determine timing or duration of future phases:	including any contingencies where pr	

f. Does the project ind	clude new reside	ential uses?			☐ Yes 7 No
If Yes, show numbers	s of units propos	sed.			
On	ne Family	<u>Two</u> Family	Three Family	<u>Multiple Family (four or more)</u>	
Initial Phase					
At completion					
of all phases					
g. Does the proposed	action include n	iew non-residenti	al construction (inclu	iding expansions)?	✓ Yes No
If Yes,					
<i>i</i> . Total number of s	structures	7			
				206 width; and 290 length 93 heat/ 24,378 cool square feet	
**		•		×	
				l result in the impoundment of any agoon or other storage?	☐Yes Z No
If Yes,	Sation of a water	suppry, reservoir	, poliu, lake, waste ic	agoon of other storage.	
	poundment:				
<i>ii</i> . If a water impound	dment, the princ	ipal source of the	water:	Ground water Surface water stream	ns Other specify:
<i>iii</i> . If other than water		na of impounded/	contained liquids an	d their source	
	r, identity the ty	pe of impounded	containeu nquius and	d their source.	
iv. Approximate size	e of the proposed	impoundment.	Volume:	_ million gallons; surface area:	acres
v. Dimensions of the	e proposed dam	or impounding str	ructure:	million gallons; surface area: height; length	
vi. Construction meth	hod/materials for	or the proposed da	am or impounding str	ructure (e.g., earth fill, rock, wood, conc	erete):
D.2. Project Operat	tions				
		ny excavation m	ining or dredging d	uring construction, operations, or both?	Yes No
				or foundations where all excavated	
materials will rema					
If Yes:					
<i>i</i> . What is the purpos					
				o be removed from the site?	
	ecity tons or cub luration of time?				
			e excavated or dred	ged, and plans to use, manage or dispose	of them.
				500, una prano co 200, marro 1	
iv. Will there be ons					Yes No
II yes, describe.					
v What is the total a	area to be dredge	d or excavated?		acres	· · · · · · · · · · · · · · · · · · ·
<i>vi</i> . What is the maxim	mum area to be v	worked at any one	e time?	acres	
vii. What would be th	ne maximum dep	oth of excavation	or dredging?	feet	
viii. Will the excavati	ion require blasti	ing?			Yes No
<i>ix.</i> Summarize site rec	clamation goals	and plan:			
1. Wayld the propose	- 1 action anusa a		of improved on do	crease in size of, or encroachment	
			ach or adjacent area?		√ Yes No
If Yes:	Vetiana, materee	uy, shorenne, see	tell of adjucent area.		
	and or waterbody	which would be	affected (by name, v	water index number, wetland map numb	er or geographic
description): Desig	gn plans may affec	t wetlands delineate	ed within the project site	e. Potentially affected wetlands may be consid	lered isolated;
nowe	er, the final jurisd	lictional status of on	-site water features is s	subject to approval by the USACE and NYSD	EC

<i>ii.</i> Describe how the proposed action would affect that waterbody or wetland, e.g. excavation, fill, placement	
alteration of channels, banks and shorelines. Indicate extent of activities, alterations and additions in square	
Permanent wetland impacts are anticipated to be approximately 1.57 acres. In addition, there will be temporary w	
anticipated to be approximately 0.23 acre. Temporary impacts are associated with trenching and utility installation restored. Post-construction will be consistent with USACE requirements and no loss of wetlands will occur.	and wetlands will be
<i>iii.</i> Will the proposed action cause or result in disturbance to bottom sediments?	√ Yes N o
If Yes, describe: 1.57 acres of wetland soil will be permanently impacted	
<i>iv.</i> Will the proposed action cause or result in the destruction or removal of aquatic vegetation?	√ Yes No
If Yes:	
 acres of aquatic vegetation proposed to be removed: 0.55 acre emergent vegetation 	
• expected acreage of aquatic vegetation remaining after project completion: 3.98 acres emergent vegetation	n
• purpose of proposed removal (e.g. beach clearing, invasive species control, boat access):	
Site grading to accomodate proposed project development	
proposed method of plant removal: Excavation and backfill	
if chemical/herbicide treatment will be used, specify product(s):	
v. Describe any proposed reclamation/mitigation following disturbance:	
Mitigation will be completed consistent with USACE and NYSDEC requirements.	
c. Will the proposed action use, or create a new demand for water?	√ Yes □ No
If Yes:	
<i>i</i> . Total anticipated water usage/demand per day: <u>2MGD process/675GPD employee</u> gallons/day	
<i>ii.</i> Will the proposed action obtain water from an existing public water supply?	✓ Yes □ No
If Yes:	
Name of district or service area: Massena Water Department (for employee use)	
• Does the existing public water supply have capacity to serve the proposal?	✓ Yes No
• Is the project site in the existing district?	☑ Yes 🗌 No
• Is expansion of the district needed?	☑ Yes 🗌 No
• Do existing lines serve the project site?	🗌 Yes 🗹 No
<i>iii.</i> Will line extension within an existing district be necessary to supply the project?	□Yes ∑ No
If Yes:	
Describe extensions or capacity expansions proposed to serve this project:	
Source(s) of supply for the district:	
<i>iv.</i> Is a new water supply district or service area proposed to be formed to serve the project site?	☐ Yes √ No
If, Yes:	
• Applicant/sponsor for new district:	
Date application submitted or anticipated:	
Proposed source(s) of supply for new district:	
<i>v</i> . If a public water supply will not be used, describe plans to provide water supply for the project:	
In addition for process supply 2MGD will be obtained from the St. Lawrence River through existing intake structures.	
vi. If water supply will be from wells (public or private), what is the maximum pumping capacity:N/A ga	llons/minute.
d. Will the proposed action generate liquid wastes?	✓ Yes □ No
If Yes:	
<i>i</i> . Total anticipated liquid waste generation per day: .6MG proc/ 675 emp gallons/day	
<i>ii.</i> Nature of liquid wastes to be generated (e.g., sanitary wastewater, industrial; if combination, describe all co	omponents and
approximate volumes or proportions of each):	1
Approximately 600,000 gallons per day of process wastewater will be generated per day, and 675 gallons of wastewater will be	treated via an onsite septic
system from operations.	
<i>iii.</i> Will the proposed action use any existing public wastewater treatment facilities? If Yes:	☐ Yes ∑ No
Name of wastewater treatment plant to be used:	
Name of district:	
 Does the existing wastewater treatment plant have capacity to serve the project? 	☐ Yes ☐No
 Is the project site in the existing district? 	\Box Yes \Box No
 Is expansion of the district needed? 	\Box Yes \Box No

• Do existing sewer lines serve the project site?	□Yes □No
• Will a line extension within an existing district be necessary to serve the project?	□Yes □No
If Yes:	
Describe extensions or capacity expansions proposed to serve this project:	
<i>iv.</i> Will a new wastewater (sewage) treatment district be formed to serve the project site?	☐ Yes 7 No
If Yes:	
Applicant/sponsor for new district:	
Date application submitted or anticipated:	
What is the receiving water for the wastewater discharge?	
<i>v.</i> If public facilities will not be used, describe plans to provide wastewater treatment for the project, including specire receiving water (name and classification if surface discharge or describe subsurface disposal plans):	fying proposed
<i>vi</i> . Describe any plans or designs to capture, recycle or reuse liquid waste:	
e. Will the proposed action disturb more than one acre and create stormwater runoff, either from new point	✓ Yes No
sources (i.e. ditches, pipes, swales, curbs, gutters or other concentrated flows of stormwater) or non-point	
source (i.e. sheet flow) during construction or post construction?	
If Yes:	
<i>i</i> . How much impervious surface will the project create in relation to total size of project parcel?	
Square feet or acres (impervious surface) 1,298,310 sf during construction; 753,833 sf after constru-	lclion
Square feet or $\underline{84.40}$ acres (parcel size)	
<i>ii</i> . Describe types of new point sources.New structures, paved areas (e.g. parking areas)	
iii. Where will the stormwater runoff be directed (i.e. on-site stormwater management facility/structures, adjacent pr	operties.
groundwater, on-site surface water or off-site surface waters)?	operates,
On site storm water basins which will release to the existing drainage easement	
If to surface waters, identify receiving water bodies or wetlands:	
• Will stormwater runoff flow to adjacent properties?	
<i>iv.</i> Does the proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater?	□Yes□No □Yes □ No
f. Does the proposed plan minimize impervious surfaces, use pervious materials of concert and re-use stormwater.	ZYes No
combustion, waste incineration, or other processes or operations?	
If Yes, identify:	
<i>i</i> . Mobile sources during project operations (e.g., heavy equipment, fleet or delivery vehicles)	
Construction vehicles during the construction period only (Monday through Friday)	
ii. Stationary sources during construction (e.g., power generation, structural heating, batch plant, crushers)	
Power generation, structural heating, operation of facility processes	
iii. Stationary sources during operations (e.g., process emissions, large boilers, electric generation)	
Process emissions	
g. Will any air emission sources named in D.2.f (above), require a NY State Air Registration, Air Facility Permit,	∠ Yes □ No
or Federal Clean Air Act Title IV or Title V Permit?	
If Yes: <i>i</i> Is the project site leasted in an Air quality non-attainment area? (Area routingly or periodically fails to most	
<i>i</i> . Is the project site located in an Air quality non-attainment area? (Area routinely or periodically fails to meet ambient air quality standards for all or some parts of the year)	□Yes 2 No
<i>ii.</i> In addition to emissions as calculated in the application, the project will generate:	
O Tons/year (short tons) of Carbon Dioxide (CO ₂)	
 O Tons/year (short tons) of Carbon Dioxide (CO₂) O Tons/year (short tons) of Nitrous Oxide (N₂O) 	
 O Tons/year (short tons) of Perfluorocarbons (PFCs) 	
 O Tons/year (short tons) of Sulfur Hexafluoride (SF₆) 	
 O Tons/year (short tons) of Carbon Dioxide equivalent of Hydroflourocarbons (HFCs) 	
 Tons/year (short tons) of Carbon Dioxide equivalent of Hydronourocarbons (Hi es) O Tons/year (short tons) of Hazardous Air Pollutants (HAPs) 	

 h. Will the proposed action generate or emit methane (including, but not limited to, sewage treatment plants, landfills, composting facilities)? If Yes: 	∐Yes ∕ No
 <i>i</i>. Estimate methane generation in tons/year (metric): <i>ii</i>. Describe any methane capture, control or elimination measures included in project design (e.g., combustion to generative, flaring): 	merate heat or
 Will the proposed action result in the release of air pollutants from open-air operations or processes, such as quarry or landfill operations? If Yes: Describe operations and nature of emissions (e.g., diesel exhaust, rock particulates/dust): 	∏Yes ∏ No
j. Will the proposed action result in a substantial increase in traffic above present levels or generate substantial new demand for transportation facilities or services? If Yes: <i>i</i> . When is the peak traffic expected (Check all that apply): ☐ Morning ☐ Evening ☐ Weekend ☐ Randomly between hours of to <i>ii</i> . For commercial activities only, projected number of truck trips/day and type (e.g., semi trailers and dump trucks	
 <i>iii.</i> Parking spaces: Existing Proposed Net increase/decrease <i>iv.</i> Does the proposed action include any shared use parking? <i>v.</i> If the proposed action includes any modification of existing roads, creation of new roads or change in existing a <i>vi.</i> Are public/private transportation service(s) or facilities available within ½ mile of the proposed site? <i>vii</i> Will the proposed action include access to public transportation or accommodations for use of hybrid, electric or other alternative fueled vehicles? <i>viii.</i> Will the proposed action include plans for pedestrian or bicycle accommodations for connections to existing pedestrian or bicycle routes? 	☐Yes ☐No access, describe: ☐Yes ☐ No ☐Yes ☐ No ☐Yes ☐ No ☐Yes ☐ No ☐Yes ☐ No
 k. Will the proposed action (for commercial or industrial projects only) generate new or additional demand for energy? If Yes: <i>i</i>. Estimate annual electricity demand during operation of the proposed action: Peak demand of 110 MW <i>ii</i>. Anticipated sources/suppliers of electricity for the project (e.g., on-site combustion, on-site renewable, via grid/lo other): NYPA substation <i>iii</i>. Will the proposed action require a new, or an upgrade, to an existing substation? 	
1. Hours of operation. Answer all items which apply. i. During Construction: ii. During Operations: • Monday - Friday: 7am - 5pm • Monday - Friday: 24 hours per day/7 days p • Saturday: Not applicable • Sunday: 24 hours per day/7 days p • Holidays: Not applicable • Mot applicable • Holidays: 24 hours per day/7 days p	er week er week

m. Will the proposed action produce noise that will exceed existing ambient noise levels during construction, operation, or both?	☑ Yes □ N	lo
If yes:		
<i>i</i> . Provide details including sources, time of day and duration:	a aita will ba	
During construction there will be construction equipment on site operating during the hours previously presented. After construction, the established as a Green Hydrogen Facility development and operation noise is anticipated at the level of this use.	e sile will de	
	☑ Yes □ N	lo
If yes:	☑ Yes □ N	lo
<i>i</i> . Describe source(s), location(s), height of fixture(s), direction/aim, and proximity to nearest occupied structures: Outdoor lighting will be dark sky compliant and designed to avoid lighting adjacent properties.		
<i>ii.</i> Will proposed action remove existing natural barriers that could act as a light barrier or screen? Describe: Proposed tree clearing	⊿ Yes □ N	10
 o. Does the proposed action have the potential to produce odors for more than one hour per day? If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest occupied structures: 	🗌 Yes 🔽 N	Jo
or chemical products 185 gallons in above ground storage or any amount in underground storage? If Yes: <i>i</i> . Product(s) to be stored	🗌 Yes 💋 N	lo
<i>ii.</i> Volume(s) per unit time (e.g., month, year) <i>iii.</i> Generally, describe the proposed storage facilities:		
 q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides, insecticides) during construction or operation? If Yes: i. Describe proposed treatment(s): 	🗌 Yes 🔽	No
ii. Will the proposed action use Integrated Pest Management Practices?	□ Yes □	No
of solid waste (excluding hazardous materials)? If Yes:	🛛 Yes 🗋	No
<i>i</i> . Describe any solid waste(s) to be generated during construction or operation of the facility:		
 Construction:1 tons permonth (unit of time) Operation :4.5 tons permonth (unit of time) 		
<i>ii.</i> Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste:		
Construction: On-site recycling dumpsters		
Operation: On-site recycling dumpsters		
<i>iii</i> . Proposed disposal methods/facilities for solid waste generated on-site:		
Construction: Typical rolloff dumpster		
Operation:On-site dumpsters		

s. Does the proposed action include construction or mod	ification of a solid waste mana	agement facility?	🗌 Yes 🖌 No		
If Yes: <i>i</i> . Type of management or handling of waste proposed for the site (e.g., recycling or transfer station, composting, landfill, or					
	for the site (e.g., recycling of		g, lalidiili, ol		
<i>ii.</i> Anticipated rate of disposal/processing:					
• Tons/month, if transfer or other non-		, or			
• Tons/hour, if combustion or thermal	treatment				
<i>iii.</i> If landfill, anticipated site life:	years				
t. Will the proposed action at the site involve the comme	rcial generation, treatment, sto	orage, or disposal of hazard	lous 🗌 Yes 🖌 No		
waste? If Yes:					
<i>i</i> . Name(s) of all hazardous wastes or constituents to be	e generated, handled or manag	ed at facility:			
		· · · · · · · · · · · · · · · · · · ·			
		- 4			
<i>ii.</i> Generally describe processes or activities involving l	hazardous wastes of constituer	Its:			
<i>iii</i> . Specify amount to be handled or generatedt	ons/month				
<i>iv.</i> Describe any proposals for on-site minimization, rec	cycling or reuse of hazardous of	constituents:			
v. Will any hazardous wastes be disposed at an existing	g offsite hazardous waste facil	ity?	☐ Yes ☐ No		
If Yes: provide name and location of facility:					
If No: describe proposed management of any hazardous	wastes which will not be sent	to a hazardous waste facilit	tv:		
If No: describe proposed management of any hazardous wastes which will not be sent to a hazardous waste facility:					
E. Site and Setting of Proposed Action					
E.1. Land uses on and surrounding the project site					
a. Existing land uses.					
<i>i</i> . Check all uses that occur on, adjoining and near the	project site.				
Urban Industrial Commercial Resid					
Forest \Box Agriculture \Box Aquatic \Box Other <i>ii.</i> If mix of uses, generally describe:	r (specify): Right-of-way (ROW)				
The project site is located in a rural area and contains forest land	l, an open field area, and a right-o	f-way (ROW) in southern portic	on of the project site. The		
project site is bordered by residential land to the northwest, fores					
b. Land uses and covertypes on the project site.					
Land use or	Current	Acreage After	Change		
Covertype	Acreage	Project Completion	(Acres +/-)		
Roads, buildings, and other paved or impervious					
surfaces	0.07	17.31	+17.24		
• Forested	67.21	19.34	-47.87		
Meadows, grasslands or brushlands (non-	2.86	35.06	+32.20		
agricultural, including abandoned agricultural)					
Agricultural	0.00	0.00	+/- 0.00		

0.06

9.43

0.00

4.77

0.06

7.86

0.00

4.77

+/-0.00

-1.57

+/-0.00

+/-0.00

(includes active orchards, field, greenhouse etc.)

Surface water features

(lakes, ponds, streams, rivers, etc.)

Non-vegetated (bare rock, earth or fill)

Wetlands (freshwater or tidal)

Describe: Right-of-way (ROW)

•

•

•

•

Other

c. Is the project site presently used by members of the community for public recreation?<i>i.</i> If Yes: explain:	☐Yes☑No
 d. Are there any facilities serving children, the elderly, people with disabilities (e.g., schools, hospitals, licensed day care centers, or group homes) within 1500 feet of the project site? If Yes, i. Identify Facilities: 	∐Yes ∏ No
 e. Does the project site contain an existing dam? If Yes: <i>i</i>. Dimensions of the dam and impoundment: Dam height: feet 	☐ Yes ⁄ No
Dam length: Dam length: Surface area: Volume impounded: gallons OR acre-feet ii. Dam's existing hazard classification: iii. Provide date and summarize results of last inspection:	
f. Has the project site ever been used as a municipal, commercial or industrial solid waste management facility, or does the project site adjoin property which is now, or was at one time, used as a solid waste management facility for the facility of the project site adjoin property which is now, or was at one time, used as a solid waste management facility for the project site adjoin property which is now, or was at one time, used as a solid waste management facility.	☐Yes / No lity?
<i>i</i> . Has the facility been formally closed?	□Yes□ No
• If yes, cite sources/documentation:	
<i>iii.</i> Describe any development constraints due to the prior solid waste activities:	
 g. Have hazardous wastes been generated, treated and/or disposed of at the site, or does the project site adjoin property which is now or was at one time used to commercially treat, store and/or dispose of hazardous waste? If Yes: <i>i</i>. Describe waste(s) handled and waste management activities, including approximate time when activities occurrent. 	∐Yes ∑ No ed:
 h. Potential contamination history. Has there been a reported spill at the proposed project site, or have any remedial actions been conducted at or adjacent to the proposed site? If Yes: 	∐Yes ∑ No
<i>i</i> . Is any portion of the site listed on the NYSDEC Spills Incidents database or Environmental Site Remediation database? Check all that apply:	☐ Yes ⁄ No
□ Yes – Spills Incidents database Provide DEC ID number(s): □ Yes – Environmental Site Remediation database Provide DEC ID number(s): □ Neither database Provide DEC ID number(s):	
<i>ii.</i> If site has been subject of RCRA corrective activities, describe control measures:	
<i>iii.</i> Is the project within 2000 feet of any site in the NYSDEC Environmental Site Remediation database? If yes, provide DEC ID number(s):	∐Yes √ No
<i>iv.</i> If yes to (i), (ii) or (iii) above, describe current status of site(s):	

v. Is the project site subject to an institutional control	limiting property uses?	☐Yes☑No
 If yes, DEC site ID number:		
Describe any use limitations:Describe any engineering controls:		
 Will the project affect the institutional or englished and the project affect the institutional or englished affect the institutional or	vineering controls in place?	☐ Yes ☐ No
Explain:	sincering controls in place.	
- Expirim		
E.2. Natural Resources On or Near Project Site		
a. What is the average depth to bedrock on the project	site? <u>>6.5</u> fee	et
b. Are there bedrock outcroppings on the project site?		☐ Yes Z No
If Yes, what proportion of the site is comprised of bed	rock outcroppings?	_%
c. Predominant soil type(s) present on project site:	MaB - Malone loam	37.1 %
c. Predominant son type(s) present on project site:	HnB - Hogansburg loam	25.7 %
	MsB - Muskellunge silty clay loam	14.0 %
d. What is the average depth to the water table on the	project site? Average:1 feet	
e. Drainage status of project site soils: Well Draine	d: 0.0 % of site	
$\overline{\mathbf{\nabla}}$ Moderately	Well Drained: <u>27.6</u> % of site	
Poorly Drain		
f. Approximate proportion of proposed action site with	u slopes: 🔽 0-10%:	% of site
in the second	☐ 10-15%:	% of site
	\Box 15% or greater:	% of site
g. Are there any unique geologic features on the proje	et site?	☐ Yes √ No
If Yes, describe:		
h. Surface water features.	1 .1 . 1 1 .7 .1 1 .	
<i>i</i> . Does any portion of the project site contain wetlan $1 + 1 + 2$	ds or other waterbodies (including streams	s, rivers, V es No
ponds or lakes)? <i>ii.</i> Do any wetlands or other waterbodies adjoin the p	roject site?	√ Yes No
If Yes to either <i>i</i> or <i>ii</i> , continue. If No, skip to E.2.i.	oject site?	
<i>iii.</i> Are any of the wetlands or waterbodies within or a state or local agency?	ajoining the project site regulated by any	federal, V es No
<i>iv.</i> For each identified regulated wetland and waterbo	dy on the project site, provide the followi	ng information:
•		sification
• T 1 D 1)T		sification
Wetlands: Name Federal Waters, Fed	eral Waters, Federal Waters, Class	roximate Size 7.31ac(federal);0.25ac(st)
• Wetland No. (if regulated by DEC) MA-1		
v. Are any of the above water bodies listed in the mos	t recent compilation of NYS water quality	y-impaired
waterbodies?		
If yes, name of impaired water body/bodies and basis Name - Pollutants - Uses:Grass River, Lower, and tribs - Prior	tor listing as impaired:	
	ty Organics – Fish Consumption	
i. Is the project site in a designated Floodway?		☐Yes ∑ No
j. Is the project site in the 100-year Floodplain?		∐Yes Z No
k. Is the project site in the 500-year Floodplain?		☐Yes ∑ No
l. Is the project site located over, or immediately adjoi	ning, a primary, principal or sole source a	quifer?
If Yes:	, a primary, principal of sole source a	
·		

m. Identify the predominant wildlife species	that occupy or use the project	site:	
Chestnut-sided warbler	Gray squirrel	White-tailed deer	
Nashville warbler	Eastern chipmunk	Eastern cottontail	
Yellow-bellied sapsucker	Groundhog		
n. Does the project site contain a designated s	significant natural community	?	☐ Yes √ No
If Yes:			
<i>i</i> . Describe the habitat/community (compos	ition, function, and basis for d	esignation):	
<i>ii.</i> Source(s) of description or evaluation:			<u> </u>
<i>iii</i> . Extent of community/habitat:			
• Currently:	1	acres	
• Following completion of project as	proposed:		
• Gain or loss (indicate + or -):		acres	
o. Does project site contain any species of pla	ant or animal that is listed by t	he federal government or NYS as	✔ Yes No
endangered or threatened, or does it contain			
If Yes:	*	C 1	
<i>i.</i> Species and listing (endangered or threatened	1):		
Listed Plant – contact NY Natural Heritage	·		
p. Does the project site contain any species of	of plant or animal that is listed	by NYS as rare, or as a species of	☐ Yes 7 No
special concern?	I	5 1	
If Yes:			
<i>i</i> . Species and listing:			
q. Is the project site or adjoining area current	ly used for hunting tranning	fishing or shell fishing?	√ Yes No
If yes, give a brief description of how the pro			
The project site is hunted by the owner of the proper			
E.3. Designated Public Resources On or N	ear Project Site		
a. Is the project site, or any portion of it, loca	ted in a designated agricultura	l district certified pursuant to	_Yes √ No
Agriculture and Markets Law, Article 25-	AA, Section 303 and 304?	-	
If Yes, provide county plus district name/num	nber:		
h An animiteral lands an inting of highla	·····		
b. Are agricultural lands consisting of highly		Drives formales differenced: 40.4 comes	√ Yes No
<i>i</i> . If Yes: acreage(s) on project site? All area <i>ii</i> . Source(s) of soil rating(s): USDA NRCS W			
	•		·····
c. Does the project site contain all or part of,	or is it substantially contiguo	us to, a registered National	∐ Yes ∑ No
Natural Landmark?			
If Yes:			
	Biological Community	Geological Feature	
ii. Provide brief description of landmark, in	cluding values behind designation	ation and approximate size/extent:	
			· · · · · · · · · · · · · · · · · · ·
d. Is the project site located in or does it adjo	in a state listed Critical Enviro	onmental Area?	☐ Yes 7 No
If Yes:			
<i>iii</i> . Designating agency and date:			

 e. Does the project site contain, or is it substantially contiguous to, a building, archaeological site, or district which is listed on the National or State Register of Historic Places, or that has been determined by the Commiss Office of Parks, Recreation and Historic Preservation to be eligible for listing on the State Register of Historic F If Yes: i. Nature of historic/archaeological resource: i. Nature of historic/archaeological resource: i. Name: iii. Brief description of attributes on which listing is based: 	
f. Is the project site, or any portion of it, located in or adjacent to an area designated as sensitive for archaeological sites on the NY State Historic Preservation Office (SHPO) archaeological site inventory?	₽ Yes No
 g. Have additional archaeological or historic site(s) or resources been identified on the project site? If Yes: <i>i</i>. Describe possible resource(s): <i>ii</i>. Basis for identification: 	∐Yes Z No
 h. Is the project site within fives miles of any officially designated and publicly accessible federal, state, or local scenic or aesthetic resource? If Yes: <i>i</i>. Identify resource: Massena Town Beach, Nicandri Nature Center, Robert Moses State Park - Thousand Islands, St. Lawre <i>ii</i>. Nature of, or basis for, designation (e.g., established highway overlook, state or local park, state historic trail of the project state park - the p	
etc.): Public beach, nature center, state park <i>iii</i> . Distance between project and resource:	
 i. Is the project site located within a designated river corridor under the Wild, Scenic and Recreational Rivers Program 6 NYCRR 666? If Yes: <i>i</i>. Identify the name of the river and its designation: <i>ii</i>. Is the activity consistent with development restrictions contained in 6NYCRR Part 666? 	☐ Yes No

F. Additional Information

Attach any additional information which may be needed to clarify your project.

If you have identified any adverse impacts which could be associated with your proposal, please describe those impacts plus any measures which you propose to avoid or minimize them.

G. Verification

I certify that the information provided is true to the best of my knowledge.

Applicant/Sponsor Name Bryan A. Bayer, PWS, CE, C&S Engineers, Inc. Date February 1, 2023

Signature___

Title Managing Environmental Scientist

Disclaimer: The EAF Mapper is a screening tool intended to assist project sponsors and reviewing agencies in preparing an environmental assessment form (EAF). Not all questions asked in the EAF are answered by the EAF Mapper. Additional information on any EAF question can be obtained by consulting the EAF Workbooks. Although the EAF Mapper provides the most up-to-date digital data available to DEC, you may also need to contact local or other data sources in order to obtain data not provided by the Mapper. Digital data is not a substitute for agency determinations.

B.i.i [Coastal or Waterfront Area]	Yes
B.i.ii [Local Waterfront Revitalization Area]	No
C.2.b. [Special Planning District]	Digital mapping data are not available or are incomplete. Refer to EAF Workbook.
E.1.h [DEC Spills or Remediation Site - Potential Contamination History]	Digital mapping data are not available or are incomplete. Refer to EAF Workbook.
E.1.h.i [DEC Spills or Remediation Site - Listed]	Digital mapping data are not available or are incomplete. Refer to EAF Workbook.
E.1.h.i [DEC Spills or Remediation Site - Environmental Site Remediation Database]	Digital mapping data are not available or are incomplete. Refer to EAF Workbook.
E.1.h.iii [Within 2,000' of DEC Remediation Site]	No
E.2.g [Unique Geologic Features]	No
E.2.h.i [Surface Water Features]	Yes
E.2.h.ii [Surface Water Features]	Yes
E.2.h.iii [Surface Water Features]	Yes - Digital mapping information on local and federal wetlands and waterbodies is known to be incomplete. Refer to EAF Workbook.
E.2.h.iv [Surface Water Features - Wetlands Name]	Federal Waters
E.2.h.v [Impaired Water Bodies]	Yes
E.2.h.v [Impaired Water Bodies - Name and Basis for Listing]	Name - Pollutants - Uses:Grass River, Lower, and tribs – Priority Organics – Fish Consumption
E.2.i. [Floodway]	Digital mapping data are not available or are incomplete. Refer to EAF Workbook.
E.2.j. [100 Year Floodplain]	Digital mapping data are not available or are incomplete. Refer to EAF Workbook.
E.2.k. [500 Year Floodplain]	Digital mapping data are not available or are incomplete. Refer to EAF Workbook.

E.2.I. [Aquifers]	No
E.2.n. [Natural Communities]	No
E.2.o. [Endangered or Threatened Species]	Yes
E.2.o. [Endangered or Threatened Species - Name]	Listed Plant – contact NY Natural Heritage
E.2.p. [Rare Plants or Animals]	No
E.3.a. [Agricultural District]	No
E.3.c. [National Natural Landmark]	No
E.3.d [Critical Environmental Area]	No
E.3.e. [National or State Register of Historic Places or State Eligible Sites]	Digital mapping data are not available or are incomplete. Refer to EAF Workbook.
E.3.f. [Archeological Sites]	Yes
E.3.i. [Designated River Corridor]	No

Full Environmental Assessment FormPart 2 - Identification of Potential Project Impacts

Project : Date :

Part 2 is to be completed by the lead agency. Part 2 is designed to help the lead agency inventory all potential resources that could be affected by a proposed project or action. We recognize that the lead agency's reviewer(s) will not necessarily be environmental professionals. So, the questions are designed to walk a reviewer through the assessment process by providing a series of questions that can be answered using the information found in Part 1. To further assist the lead agency in completing Part 2, the form identifies the most relevant questions in Part 1 that will provide the information needed to answer the Part 2 question. When Part 2 is completed, the lead agency will have identified the relevant environmental areas that may be impacted by the proposed activity.

If the lead agency is a state agency **and** the action is in any Coastal Area, complete the Coastal Assessment Form before proceeding with this assessment.

Tips for completing Part 2:

- Review all of the information provided in Part 1.
- Review any application, maps, supporting materials and the Full EAF Workbook.
- Answer each of the 18 questions in Part 2.
- If you answer "Yes" to a numbered question, please complete all the questions that follow in that section.
- If you answer "No" to a numbered question, move on to the next numbered question.
- Check appropriate column to indicate the anticipated size of the impact.
- Proposed projects that would exceed a numeric threshold contained in a question should result in the reviewing agency checking the box "Moderate to large impact may occur."
- The reviewer is not expected to be an expert in environmental analysis.
- If you are not sure or undecided about the size of an impact, it may help to review the sub-questions for the general question and consult the workbook.
- When answering a question consider all components of the proposed activity, that is, the "whole action".
- Consider the possibility for long-term and cumulative impacts as well as direct impacts.
- Answer the question in a reasonable manner considering the scale and context of the project.

1. Impact on Land

L.	Impact on Land			
	Proposed action may involve construction on, or physical alteration of,	🗆 NO		YES
	the land surface of the proposed site. (See Part 1. D.1)			
	If "Yes", answer questions a - j. If "No", move on to Section 2.			
		Delevent	No or	Madanata

	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may involve construction on land where depth to water table is less than 3 feet.	E2d		
b. The proposed action may involve construction on slopes of 15% or greater.	E2f		
c. The proposed action may involve construction on land where bedrock is exposed, or generally within 5 feet of existing ground surface.	E2a		
d. The proposed action may involve the excavation and removal of more than 1,000 tons of natural material.	D2a		
e. The proposed action may involve construction that continues for more than one year or in multiple phases.	D1e		
f. The proposed action may result in increased erosion, whether from physical disturbance or vegetation removal (including from treatment by herbicides).	D2e, D2q		
g. The proposed action is, or may be, located within a Coastal Erosion hazard area.	Bli		
h. Other impacts:			

The proposed action may result in the modification or destruction of, or inhib access to, any unique or unusual land forms on the site (e.g., cliffs, dunes, minerals, fossils, caves). (See Part 1. E.2.g) <i>If "Yes", answer questions a - c. If "No", move on to Section 3.</i>	□ NO		YES
ij ies , unswer questions a c. ij ivo , move on to section 5.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. Identify the specific land form(s) attached:	E2g		
 b. The proposed action may affect or is adjacent to a geological feature listed as a registered National Natural Landmark. Specific feature:	E3c		
c. Other impacts:			
 3. Impacts on Surface Water The proposed action may affect one or more wetlands or other surface water bodies (e.g., streams, rivers, ponds or lakes). (See Part 1. D.2, E.2.h) If "Yes", answer questions a - l. If "No", move on to Section 4. 	□ NC		YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may create a new water body.	D2b, D1h		
b. The proposed action may result in an increase or decrease of over 10% or more than a 10 acre increase or decrease in the surface area of any body of water.	D2b		
c. The proposed action may involve dredging more than 100 cubic yards of material from a wetland or water body.	D2a		
d. The proposed action may involve construction within or adjoining a freshwater or tidal wetland, or in the bed or banks of any other water body.	E2h		
e. The proposed action may create turbidity in a waterbody, either from upland erosion, runoff or by disturbing bottom sediments.	D2a, D2h		
f. The proposed action may include construction of one or more intake(s) for withdrawal of water from surface water.	D2c		
g. The proposed action may include construction of one or more outfall(s) for discharge of wastewater to surface water(s).	D2d		
h. The proposed action may cause soil erosion, or otherwise create a source of stormwater discharge that may lead to siltation or other degradation of receiving water bodies.	D2e		
i. The proposed action may affect the water quality of any water bodies within or downstream of the site of the proposed action.	E2h		
j. The proposed action may involve the application of pesticides or herbicides in or around any water body.	D2q, E2h		
k. The proposed action may require the construction of new, or expansion of existing,	D1a, D2d		

1. Other impacts:					
 4. Impact on groundwater The proposed action may result in new or additional use of ground water, or □ NO □ YES may have the potential to introduce contaminants to ground water or an aquifer. (See Part 1. D.2.a, D.2.c, D.2.d, D.2.p, D.2.q, D.2.t) If "Yes", answer questions a - h. If "No", move on to Section 5.					
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur		
a. The proposed action may require new water supply wells, or create additional demand on supplies from existing water supply wells.	D2c				
b. Water supply demand from the proposed action may exceed safe and sustainable withdrawal capacity rate of the local supply or aquifer. Cite Source:	D2c				
c. The proposed action may allow or result in residential uses in areas without water and sewer services.	D1a, D2c				
d. The proposed action may include or require wastewater discharged to groundwater.	D2d, E21				
e. The proposed action may result in the construction of water supply wells in locations where groundwater is, or is suspected to be, contaminated.	D2c, E1f, E1g, E1h				
f. The proposed action may require the bulk storage of petroleum or chemical products over ground water or an aquifer.	D2p, E2l				
g. The proposed action may involve the commercial application of pesticides within 100 feet of potable drinking water or irrigation sources.	E2h, D2q, E2l, D2c				
h. Other impacts:					

 5. Impact on Flooding The proposed action may result in development on lands subject to flooding. (See Part 1. E.2) If "Yes", answer questions a - g. If "No", move on to Section 6. 	□ NO		YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may result in development in a designated floodway.	E2i		
b. The proposed action may result in development within a 100 year floodplain.	E2j		
c. The proposed action may result in development within a 500 year floodplain.	E2k		
d. The proposed action may result in, or require, modification of existing drainage patterns.	D2b, D2e		
e. The proposed action may change flood water flows that contribute to flooding.	D2b, E2i, E2j, E2k		
f. If there is a dam located on the site of the proposed action, is the dam in need of repair, or upgrade?	E1e		

g. Other impacts:			
 6. Impacts on Air The proposed action may include a state regulated air emission source. (See Part 1. D.2.f., D.2.h, D.2.g) If "Yes", answer questions a - f. If "No", move on to Section 7. 	□ NO		YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
 a. If the proposed action requires federal or state air emission permits, the action may also emit one or more greenhouse gases at or above the following levels: More than 1000 tons/year of carbon dioxide (CO₂) More than 3.5 tons/year of nitrous oxide (N₂O) More than 1000 tons/year of carbon equivalent of perfluorocarbons (PFCs) More than .045 tons/year of sulfur hexafluoride (SF₆) More than 1000 tons/year of carbon dioxide equivalent of hydrochloroflourocarbons (HFCs) emissions vi. 43 tons/year or more of methane 	D2g D2g D2g D2g D2g D2g D2h		
b. The proposed action may generate 10 tons/year or more of any one designated hazardous air pollutant, or 25 tons/year or more of any combination of such hazardous air pollutants.	D2g		
c. The proposed action may require a state air registration, or may produce an emissions rate of total contaminants that may exceed 5 lbs. per hour, or may include a heat source capable of producing more than 10 million BTU's per hour.	D2f, D2g		
d. The proposed action may reach 50% of any of the thresholds in "a" through "c", above.	D2g		
e. The proposed action may result in the combustion or thermal treatment of more than 1 ton of refuse per hour.	D2s		
f. Other impacts:			

7. Impact on Plants and Animals The proposed action may result in a loss of flora or fauna. (See Part 1. E.2. 1 If "Yes", answer questions a - j. If "No", move on to Section 8.	□ NO	□ YES	
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may cause reduction in population or loss of individuals of any threatened or endangered species, as listed by New York State or the Federal government, that use the site, or are found on, over, or near the site.	E2o		
b. The proposed action may result in a reduction or degradation of any habitat used by any rare, threatened or endangered species, as listed by New York State or the federal government.	E2o		
c. The proposed action may cause reduction in population, or loss of individuals, of any species of special concern or conservation need, as listed by New York State or the Federal government, that use the site, or are found on, over, or near the site.	E2p		
d. The proposed action may result in a reduction or degradation of any habitat used by any species of special concern and conservation need, as listed by New York State or the Federal government.	E2p		

e. The proposed action may diminish the capacity of a registered National Natural Landmark to support the biological community it was established to protect.	E3c		
f. The proposed action may result in the removal of, or ground disturbance in, any portion of a designated significant natural community. Source:	E2n		
g. The proposed action may substantially interfere with nesting/breeding, foraging, or over-wintering habitat for the predominant species that occupy or use the project site.	E2m		
h. The proposed action requires the conversion of more than 10 acres of forest, grassland or any other regionally or locally important habitat. Habitat type & information source:	E1b		
i. Proposed action (commercial, industrial or recreational projects, only) involves use of herbicides or pesticides.	olves use of D2q		
j. Other impacts:			

8. Impact on Agricultural Resources The proposed action may impact agricultural resources. (See Part 1. E.3.a. a If "Yes", answer questions a - h. If "No", move on to Section 9.	□ NO	□ YES	
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
 a. The proposed action may impact soil classified within soil group 1 through 4 of the NYS Land Classification System. 	E2c, E3b		
b. The proposed action may sever, cross or otherwise limit access to agricultural land (includes cropland, hayfields, pasture, vineyard, orchard, etc).	E1a, Elb		
c. The proposed action may result in the excavation or compaction of the soil profile of active agricultural land.	E3b		
d. The proposed action may irreversibly convert agricultural land to non-agricultural uses, either more than 2.5 acres if located in an Agricultural District, or more than 10 acres if not within an Agricultural District.	E1b, E3a		
e. The proposed action may disrupt or prevent installation of an agricultural land management system.	El a, E1b		
f. The proposed action may result, directly or indirectly, in increased development potential or pressure on farmland.	C2c, C3, D2c, D2d		
g. The proposed project is not consistent with the adopted municipal Farmland Protection Plan.	C2c		
h. Other impacts:			

If "Yes", answer questions a - g. If "No", go to Section 10.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. Proposed action may be visible from any officially designated federal, state, or local scenic or aesthetic resource.	E3h		
b. The proposed action may result in the obstruction, elimination or significant screening of one or more officially designated scenic views.	E3h, C2b		
c. The proposed action may be visible from publicly accessible vantage points:i. Seasonally (e.g., screened by summer foliage, but visible during other seasons)ii. Year round	E3h		
d. The situation or activity in which viewers are engaged while viewing the proposed action is:i. Routine travel by residents, including travel to and from work ii. Recreational or tourism based activities	E3h E2q, E1c		
e. The proposed action may cause a diminishment of the public enjoyment and appreciation of the designated aesthetic resource.	E3h		
 f. There are similar projects visible within the following distance of the proposed project: 0-1/2 mile ½ -3 mile 3-5 mile 5+ mile 	D1a, E1a, D1f, D1g		
g. Other impacts:			

	Part I Question(s)	small impact	to large impact may
		may occur	occur
a. The proposed action may occur wholly or partially within, or substantially contiguous to, any buildings, archaeological site or district which is listed on the National or State Register of Historical Places, or that has been determined by the Commissioner	E3e		
of the NYS Office of Parks, Recreation and Historic Preservation to be eligible for listing on the State Register of Historic Places.			
b. The proposed action may occur wholly or partially within, or substantially contiguous to, an area designated as sensitive for archaeological sites on the NY State Historic Preservation Office (SHPO) archaeological site inventory.	E3f		
c. The proposed action may occur wholly or partially within, or substantially contiguous to, an archaeological site not included on the NY SHPO inventory. Source:	E3g		

d. Other impacts:			
If any of the above (a-d) are answered "Moderate to large impact may e. occur", continue with the following questions to help support conclusions in Part 3:			
i. The proposed action may result in the destruction or alteration of all or part of the site or property.	E3e, E3g, E3f		
ii. The proposed action may result in the alteration of the property's setting or integrity.	E3e, E3f, E3g, E1a, E1b		
iii. The proposed action may result in the introduction of visual elements which are out of character with the site or property, or may alter its setting.	E3e, E3f, E3g, E3h, C2, C3		
 11. Impact on Open Space and Recreation The proposed action may result in a loss of recreational opportunities or a reduction of an open space resource as designated in any adopted municipal open space plan. (See Part 1. C.2.c, E.1.c., E.2.q.) If "Yes", answer questions a - e. If "No", go to Section 12.			YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may result in an impairment of natural functions, or "ecosystem services", provided by an undeveloped area, including but not limited to stormwater storage, nutrient cycling, wildlife habitat.	D2e, E1b E2h, E2m, E2o, E2n, E2p		
b. The proposed action may result in the loss of a current or future recreational resource. C2a			
c. The proposed action may eliminate open space or recreational resource in an area with few such resources.	C2a, C2c E1c, E2q		
d. The proposed action may result in loss of an area now used informally by the community as an open space resource.	C2c, E1c		
e. Other impacts:			
12. Impact on Critical Environmental Areas The proposed action may be located within or adjacent to a critical environmental area (CEA). (See Part 1. E.3.d) <i>If "Yes", answer questions a - c. If "No", go to Section 13.</i>			YES
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action may result in a reduction in the quantity of the resource or characteristic which was the basis for designation of the CEA.	E3d		
 a. The proposed action may result in a reduction in the quantity of the resource or characteristic which was the basis for designation of the CEA. b. The proposed action may result in a reduction in the quality of the resource or characteristic which was the basis for designation of the CEA. 	E3d E3d		

13. Impact on Transportation The proposed action may result in a change to existing transportation systems	. 🗆 N(YES
(See Part 1. D.2.j)			115
If "Yes", answer questions a - f. If "No", go to Section 14.	Relevant Part I Question(s)	No, or small impact	Moderate to large impact may
a. Projected traffic increase may exceed capacity of existing road network.	D2j	may occur	occur
b. The proposed action may result in the construction of paved parking area for 500 or more vehicles.	D2j		
c. The proposed action will degrade existing transit access.	D2j		
d. The proposed action will degrade existing pedestrian or bicycle accommodations.	D2j		
e. The proposed action may alter the present pattern of movement of people or goods.	D2j		
f. Other impacts:			
14. Impact on Energy The proposed action may cause an increase in the use of any form of energy. (See Part 1. D.2.k)			YES
If "Yes", answer questions a - e. If "No", go to Section 15.	Relevant	No, or	Moderate
	Part I Question(s)	small impact may occur	to large impact may occur
a. The proposed action will require a new, or an upgrade to an existing, substation.	D2k		
b. The proposed action will require the creation or extension of an energy transmission or supply system to serve more than 50 single or two-family residences or to serve a commercial or industrial use.	D1f, D1q, D2k		
c. The proposed action may utilize more than 2,500 MWhrs per year of electricity.	D2k		
d. The proposed action may involve heating and/or cooling of more than 100,000 square feet of building area when completed.	D1g		
e. Other Impacts:			
15. Impact on Noise, Odor, and Light The proposed action may result in an increase in noise, odors, or outdoor ligh	ting. 🗆 NC		YES
(See Part 1. D.2.m., n., and o.) If "Yes", answer questions a - f. If "No", go to Section 16.			
(See Part 1. D.2.m., n., and o.) If "Yes", answer questions a - f. If "No", go to Section 16.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
	Part I	small impact	to large impact may
If "Yes", answer questions a - f. If "No", go to Section 16. a. The proposed action may produce sound above noise levels established by local	Part I Question(s)	small impact may occur	to large impact may occur

d. The proposed action may result in light shining onto adjoining properties.	D2n	
e. The proposed action may result in lighting creating sky-glow brighter than existing area conditions.	D2n, E1a	
f. Other impacts:		

16. Impact on Human Health The proposed action may have an impact on human health from exposure to new or existing sources of contaminants. (See Part 1.D.2.q., E.1. d. f. g. ar <i>If "Yes", answer questions a - m. If "No", go to Section 17.</i>	□ No nd h.)	0 🛛	YES
	Relevant Part I Question(s)	No,or small impact may cccur	Moderate to large impact may occur
a. The proposed action is located within 1500 feet of a school, hospital, licensed day care center, group home, nursing home or retirement community.	E1d		
b. The site of the proposed action is currently undergoing remediation.	E1g, E1h		
c. There is a completed emergency spill remediation, or a completed environmental site remediation on, or adjacent to, the site of the proposed action.	E1g, E1h		
d. The site of the action is subject to an institutional control limiting the use of the property (e.g., easement or deed restriction).	E1g, E1h		
e. The proposed action may affect institutional control measures that were put in place to ensure that the site remains protective of the environment and human health.	E1g, E1h		
f. The proposed action has adequate control measures in place to ensure that future generation, treatment and/or disposal of hazardous wastes will be protective of the environment and human health.	D2t		
g. The proposed action involves construction or modification of a solid waste management facility.	D2q, E1f		
h. The proposed action may result in the unearthing of solid or hazardous waste.	D2q, E1f		
i. The proposed action may result in an increase in the rate of disposal, or processing, of solid waste.	D2r, D2s		
j. The proposed action may result in excavation or other disturbance within 2000 feet of a site used for the disposal of solid or hazardous waste.	E1f, E1g E1h		
k. The proposed action may result in the migration of explosive gases from a landfill site to adjacent off site structures.	E1f, E1g		
1. The proposed action may result in the release of contaminated leachate from the project site.	D2s, E1f, D2r		
m. Other impacts:			

17. Consistency with Community Plans			7 50
The proposed action is not consistent with adopted land use plans. (See Part 1. C.1, C.2. and C.3.)	□ NO	ΠY	ES
If "Yes", answer questions a - h. If "No", go to Section 18.			1
	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may occur
a. The proposed action's land use components may be different from, or in sharp contrast to, current surrounding land use pattern(s).	C2, C3, D1a E1a, E1b		
b. The proposed action will cause the permanent population of the city, town or village in which the project is located to grow by more than 5%.	C2		
c. The proposed action is inconsistent with local land use plans or zoning regulations.	C2, C2, C3		
d. The proposed action is inconsistent with any County plans, or other regional land use plans.	C2, C2		
e. The proposed action may cause a change in the density of development that is not supported by existing infrastructure or is distant from existing infrastructure.	C3, D1c, D1d, D1f, D1d, Elb		
f. The proposed action is located in an area characterized by low density development that will require new or expanded public infrastructure.	C4, D2c, D2d D2j		
g. The proposed action may induce secondary development impacts (e.g., residential or commercial development not included in the proposed action)	C2a		
h. Other:			
 18. Consistency with Community Character The proposed project is inconsistent with the existing community character. (See Part 1. C.2, C.3, D.2, E.3) If "Yes", answer questions a - g. If "No", proceed to Part 3. 	□ NO	ΠY	ΈS
If Tes , unswer questions a - g. If No , proceed to Fart 5.	Relevant Part I Question(s)	No, or small impact may occur	Moderate to large impact may
a. The proposed action may replace or eliminate existing facilities, structures, or areas of historic importance to the community.	E3e, E3f, E3g		occur
b. The proposed action may create a demand for additional community services (e.g.	C4		
schools, police and fire)			
	C2, C3, D1f D1g, E1a		
schools, police and fire)c. The proposed action may displace affordable or low-income housing in an area where	C2, C3, D1f		
 schools, police and fire) c. The proposed action may displace affordable or low-income housing in an area where there is a shortage of such housing. d. The proposed action may interfere with the use or enjoyment of officially recognized 	C2, C3, D1f D1g, E1a		
 schools, police and fire) c. The proposed action may displace affordable or low-income housing in an area where there is a shortage of such housing. d. The proposed action may interfere with the use or enjoyment of officially recognized or designated public resources. e. The proposed action is inconsistent with the predominant architectural scale and 	C2, C3, D1f D1g, E1a C2, E3		

Project : Date :

Full Environmental Assessment Form Part 3 - Evaluation of the Magnitude and Importance of Project Impacts and Determination of Significance

Part 3 provides the reasons in support of the determination of significance. The lead agency must complete Part 3 for every question in Part 2 where the impact has been identified as potentially moderate to large or where there is a need to explain why a particular element of the proposed action will not, or may, result in a significant adverse environmental impact.

Based on the analysis in Part 3, the lead agency must decide whether to require an environmental impact statement to further assess the proposed action or whether available information is sufficient for the lead agency to conclude that the proposed action will not have a significant adverse environmental impact. By completing the certification on the next page, the lead agency can complete its determination of significance.

Reasons Supporting This Determination:

To complete this section:

- Identify the impact based on the Part 2 responses and describe its magnitude. Magnitude considers factors such as severity, size or extent of an impact.
- Assess the importance of the impact. Importance relates to the geographic scope, duration, probability of the impact occurring, number of people affected by the impact and any additional environmental consequences if the impact were to occur.
- The assessment should take into consideration any design element or project changes.
- Repeat this process for each Part 2 question where the impact has been identified as potentially moderate to large or where there is a need to explain why a particular element of the proposed action will not, or may, result in a significant adverse environmental impact.
- Provide the reason(s) why the impact may, or will not, result in a significant adverse environmental impact
- For Conditional Negative Declarations identify the specific condition(s) imposed that will modify the proposed action so that no significant adverse environmental impacts will result.
- Attach additional sheets, as needed.

	Determination of S	lignificance - T	ype 1 and Un	listed Actions
SEQR Status:	□ Type 1	□ Unlisted		
Identify portions of EAF	completed for this Project:	□ Part 1	□ Part 2	□ Part 3

Upon review of the information recorded on this EAF	, as noted, plus this additional support information
See attached FEAF Part 3 - Additional Information	

and considering both the magnitude and importance of each identified potential impact, it is the conclusion of the ______as lead agency that:

A. This project will result in no significant adverse impacts on the environment, and, therefore, an environmental impact statement need not be prepared. Accordingly, this negative declaration is issued.

B. Although this project could have a significant adverse impact on the environment, that impact will be avoided or substantially mitigated because of the following conditions which will be required by the lead agency:

There will, therefore, be no significant adverse impacts from the project as conditioned, and, therefore, this conditioned negative declaration is issued. A conditioned negative declaration may be used only for UNLISTED actions (see 6 NYCRR 617.7(d)).

C. This Project may result in one or more significant adverse impacts on the environment, and an environmental impact statement must be prepared to further assess the impact(s) and possible mitigation and to explore alternatives to avoid or reduce those impacts. Accordingly, this positive declaration is issued.

Name of Action: Massena Green Hydrogen Facility

Name of Lead Agency: Town of Massena Planning Board

Name of Responsible Officer in Lead Agency: Vance Fleury

Signature of Preparer (if different from Responsible Officer)

Title of Responsible Officer: Chairman

Signature of Responsible Officer in Lead Agency:

ance flourer

Date:

Date: May 18 2023

For Further Information:

Contact Person: Bryan A. Bayer, C&S Engineers, Inc.

Address: 499 Col. Eileen Collins Boulevard

Telephone Number: 315-455-2000

E-mail: bbayer@cscos.com

For Type 1 Actions and Conditioned Negative Declarations, a copy of this Notice is sent to:

Chief Executive Officer of the political subdivision in which the action will be principally located (e.g., Town / City / Village of) Other involved agencies (if any) Applicant (if any)

Environmental Notice Bulletin: http://www.dec.ny.gov/enb/enb.html

Massena Green Hydrogen Facility Air Products & Chemicals, Inc. Town of Massena FEAF Part 3 – Additional Information

The Town of Massena Planning Board (Town) is currently undertaking a municipal zoning review consisting of site plan approval of the proposed Air Products & Chemicals, Inc. (Air Products) Massena Green Hydrogen Facility Project (Project). The Project involves development of a facility that will harvest up to 35 metric tons per day (MTPD) of green hydrogen utilizing renewable power. The proposed facility will be located along Pontoon Bridge Road in the Town of Massena. The Town has declared its intent to be Lead Agency under the State Environmental Quality Review Act (SEQR) by resolution.

On March 17, 2023, the Town of Massena Planning Board submitted a SEQR Lead Agency Status letter with a completed and signed Part I – Full Environmental Assessment Form (FEAF) for the proposed Massena Green Hydrogen Facility to all involved and interested agencies.

The New York State Department of Environmental Conservation (NYSDEC) responded by letter on April 3, 2023. The NYSDEC concurred with the Town of Massena Planning Board acting as lead agency and listed comments regarding the proposed action (see Appendix A – NYSDEC SEQR Correspondence). Responses to NYSDEC comments are as follows:

- 1.) A Joint Application for Permit for an Article 24 Freshwater Wetlands Permit and Section 401 Water Quality Certification from the NYSDEC, as well as a Section 404 Permit with the USACE, is currently underway and will be submitted to the NYSDEC and USACE for approval upon completion. No impacts to Article 24 Freshwater Wetlands or their respective adjacent areas will be completed as part of this project. Note that the construction of the stormwater detention basins described in your letter are anticipated to be constructed in 2023/2024 prior to the proposed changes in Article 24 Freshwater Wetlands regulations anticipated in 2025.
- 2.) The requirement for a Construction Stormwater Permit has been noted. A stormwater pollution prevention plan (SWPPP) is completed for this project, and a Notice of Intent will be submitted as appropriate.
- 3.) Disturbance of greater than 5 acres at a time during construction will require authorization from the Regional Water Engineer. The applicant will comply with this requirement as necessary.
- 4.) Water that will serve project operation is being purchased from the Village of Massena and the connection will be made at their water treatment plant. The Village Water Department is aware of this action and will be reviewing and approving the connection.
- 5.) A State Pollutant Discharge Elimination System (SPDES) permit application has been submitted to the NYSDEC. Design documents (report, plans & specs) have been submitted for NYSDEC review in order to obtain a SPDES permit.
- 6.) Section D.1.4 of the FEAF Part 1 document has been updated to account for the detention basins in the northern section of the property. See the FEAF Part 1 for updated information. The basins are proposed to account for stormwater runoff and treatment per SPDES requirements.
- 7.) As noted in the FEAF Part 1, 2 MGD of water will be obtained from the St. Lawrence River through existing intake structures; to clarify, no work will take place at these intake structures at the river as they are existing and suitable to serve the proposed project.

8.) The wastewater generated will include raw treatment water backwash, cooling water blowdown, water rejects from the demineralizer plant, and steam condensate. The expected flow of these waste streams for Phase 1 is approximately 370,000 gpd, as illustrated in the following table.

Waste Stream	Flow (m3/h)	Flow Rate (gal/min)	Daily Flow Rate (gal/day)	Temperature (°F)
Raw Water Treatment Backwash	20	88.1	126,803	59
Cooling Tower Blowdown	32	140.9	202,884	113
Demineralizer Reject Water	5	22.0	31,701	68
Steam Blowdown	1	4.4	6,340	302
Total Discharge	58	255.4	367,727	

The pollutant loading of the wastewater will be the same as the incoming water from the St. Lawrence River, but the wastewater will be concentrated due to the various stages of water treatment and evaporation from the cooling tower, as listed above. The attached table provides the estimated concentration and loading to the Massena Power Canal.

9.) As proposed in the design, a discharge line will extend to the Massena Power Canal (Fisheries Index Number SL-1-6A1 [unnamed water]). The discharge line will be 15 inches in diameter stretching 1,328 feet in length. In association with the proposed discharge line will be a 20-foot wide drainage easement. The 15" diameter discharge will be a Class 52 ductile iron storm sewer design surrounded by heavy duty grouted rip rap at the headwall. For further details, please see the plan, profile, and detail sheets for the water discharge pipe to the canal provided in Appendix B.

As part of this *FEAF Part 3 – Additional Information* document, the items below address potential impacts and associated mitigation measures related to the proposed action.

1.) *Impact on land* – The total acreage of the proposed action is 84.40 acres, including 72.46 acres of proposed disturbance.

Excavation of soil will be required for the construction of the project due to the foundation system and utility installation in the design plans. It is anticipated that excavated materials will remain onsite. In the event contaminated soils are encountered, these soils will be handled consistent with federal, state, and local regulations.

The duration of the project is estimated at 37-months. Construction activities typically result in potential impacts associated with traffic, dust, stormwater, and noise. These potential impacts are minimized as a result of the following measures:

• The developer will be required to implement a maintenance and protection of traffic plan for use during construction. The plan will be reviewed and approved by the Town of Massena;

- The developer will be required to implement best management practices for dust control;
- Stormwater impacts will be addressed by implementation of erosion and sediment controls during construction, consistent with a Construction Stormwater Permit and SWPPP;
- The proposed project will cause a temporary increase in ambient noise levels from the operation of construction equipment. Measures to minimize noise impacts during construction will include adherence to local ordinances for working hours and inspection of equipment for proper muffling;
- Additionally, in accordance with NYSDEC, authorization from the Regional Water Engineer is required prior to disturbing more than 5 acres at any given time during construction.

With employment of proper mitigation measures, the impact on land associated with this project is not considered a significant environmental impact.

2.) Impact on geological features – The project site does not contain known unique or unusual land forms (e.g. cliffs, dunes, minerals, fossils, caves). No impact to significant geologic features will occur due to the proposed project.

3.) Impacts on surface water – The project site includes 9.43 acres of wetland habitat and 0.06 acre of stream habitat. In total, 1.57 acres of permanent wetland impacts are anticipated. Temporary wetland impacts will be limited to approximately 0.23 acre and will be associated with trenching and utility installation; impacted wetlands will be restored and NYSDEC and USACE requirements will be adhered to post-construction.

Any work completed within NYSDEC wetland MA-1, as well as its 100-foot regulated adjacent area, will require an Article 24 wetlands permit in accordance with the Freshwater Wetlands Act. A Section 404 permit through the USACE will be required for any discharge or fill within federally regulated wetlands and a Section 10 permit through the USACE will be required for any discharge or discharge or fill within the federally- regulated stream. A Section 401 Water Quality Certificate will be required through the NYSDEC for any Section 404 permit issued by the USACE.

Potential impacts to nearby surface waters from construction will be avoided by implementation of appropriate soil erosion and sediment controls. Impacted wetlands will be restored consistent NYSDEC and USACE requirements, and therefore, no loss of wetlands will occur. The Wetland & Waterway Delineation Report is included in Appendix C.

4.) *Impact on groundwater* – The project is not located within the footprint of a sole source, primary, or principal aquifer. In addition, the project does not involve use or disposal of hazardous materials, or the bulk storage of petroleum or chemical products that could potentially contaminate local groundwater supplies.

5.) *Impact on flooding* – The proposed project is located outside the regulated floodplain boundaries. No impacts to floodplains will occur as a result of this project.

6.) Impacts on air – The USEPA, through the federal Clean Air Act (CAA), has established National Ambient Air Quality Standards (NAAQS) for six criteria pollutants: carbon monoxide (CO), sulfur dioxide

(SO2), nitrogen dioxide (NO2), particulate matter (PM10 and PM2.5), ozone, and lead. An area that violates a national primary or secondary NAAQS for one or more of the USEPA designated criteria pollutants is referred to as non-attainment. A maintenance area is one that has previously been in violation of the NAAQS but has since implemented an avoidance plan and has had no additional violations over an extended period of time.

The project is located in St. Lawrence County. According to the USEPA Green Book (current as of February 28, 2019), St. Lawrence County is currently in attainment for all criteria pollutants, except SO2, which is listed as "non-attainment". Further review of the Green Book indicates that part of St. Lawrence County was designated as a SO2 non-attainment in years 2021-2023 and has not yet been redesignated to a maintenance area. An area that has remained in compliance with the NAAQS for an extended period of time is re-designated as "attainment".

Air emission sources require consistency with State and federal air quality standards. The New York air permitting program regulates sources of air pollution. The program is required under provisions set forth in the federal Clean Air Act and New York State regulation (6 NYCRR Part 201). NYSDEC Division of Air Resources administers the air program. The proposed project includes equipment that requires a New York State Air Registration from New York State's air program.

SO2 emissions associated with the proposed project will be limited in nature. The two potential sources of SO2 emissions would be on-road diesel trucks shipping bulk hydrogen to costumers as well as non-road construction vehicles and equipment. During operation, SO2 emissions will be related to diesel trucks used for trucking operations to and from the facility as well as emergency generators if there is a loss of power.

Beginning in 2006, the United State Environmental Protection Agency (USEPA) began to phase-in stringent regulations to lower the amount of sulfur in diesel fuel to 15 ppm. This fuel is known as ultra-low sulfur diesel (ULSD). These diesel regulations targeted emissions from two on-road (or highway) vehicles and non-road engines and equipment.

After 2010, USEPA's diesel standards required that:

- All highway diesel fuel supplied to the market be ULSD; and
- All highway diesel vehicles must use ULSD.

After 2014, EPA's diesel standards require that:

- All non-road, locomotive, and marine (NRLM) diesel fuel must be ULSD; and
- All non-road engines and equipment, such as generators, must use this ULSD.

According to the USEPA, the ULSD standards for on-road and non-road vehicles and equipment has collectively reduced sulfur emissions by more than 90%. In addition, once in operation, Air Products plans to encourage the use of hydrogen powered vehicles, rather than diesel or gasoline, to transport the hydrogen from the facility.

7.) Impacts on plants and animals – The majority of the project site contains forest habitat with a stream, an open field, and a right-of-way. Although over 10 acres of forest habitat will be converted due to the proposed action, forested habitat surrounds the project site primarily to the north and northeast. Wildlife species likely to inhabit the project site include small mammals like gray squirrel and eastern cottontail, as well as larger animals like the white-tail deer and birds, including chestnut-sided warbler. The majority of species within the project site are relatively mobile species and will likely be able to inhabit neighboring or nearby suitable habitat post-construction. No significant impact to plants and animals will occur as a result of this project.

As indicated by the EAF Mapper, the New York Natural Heritage Program (NYNHP) was consulted on December 19, 2022; NYNHP responded on February 2, 2023 listing great plains lady tresses (*Spiranthes magnicamporum*) within 0.5 mile of the project site. Information on the great plains lady tresses is included below.

The U.S. Fish and Wildlife Service (USFWS) Information for Planning and Conservation (IPaC) online service was consulted for this project as well. The IPaC is used to obtain a USFWS Official Species List (See Attachment C) that identifies the potential presence of federally listed rare, threatened, and endangered species near a proposed action that may be affected by project activities. The USFWS Official Species List dated April 3, 2023 lists one mammal, northern long-eared bat (*Myotis septentrionalis*), and one insect, monarch butterfly (*Danaus plexippus*). Lastly and according to the IPaC system, there are no critical habitats located within the property and no other Federally threatened or endangered species, or environmentally-sensitive habitat areas were identified. C&S staff completed the Determination Key within the IPaC online service which indicated the proposed project is not likely to adversely affect the northern long-eared bat. No tree clearing requirements are recommended. Information on the northern long-eared bat and monarch butterfly is included below.

All agency correspondence related to rare, threatened, or endangered species can be found in Appendix D.

Great Plains Lady Tresses

Great plains lady tresses is a perennial orchid listed as endangered at the state level and critically imperiled in New York State by NYNHP status. Unlike other orchid species, this species is relatively conspicuous, lacking leaves at flowering time; additionally, it has a characteristically strong vanilla-like scent and flowers late in the growing season (mid-September to mid-October). This species prefers open habitat with sparce vegetation and thrives in open alvar grasslands, on disturbed dredge/fill land with poor soils, cobbly soils, ice-scoured flat riverside meadows, and areas with limited woody vegetation.¹ As the project site is primarily wooded habitat with a stream and vegetated floodplain, it is unlikely that great plains lady tresses will occupy this land.

¹ New York Natural Heritage Program. 2023. Online Conservation Guide for Spiranthes magnicamporum. Available from: https://guides.nynhp.org/great-plains-ladies-tresses/. Accessed April 4, 2023.

Northern Long-Eared Bat

The northern long-eared bat is listed as endangered at the state and federal level. The northern longeared bat winters in caves and mines and migrates seasonally to summer roosts in dead and decadent trees. Northern long-eared bats are typically associated with mature interior forest² and tend to avoid woodlands with significant edge habitat³. They may most often be found in cluttered or densely forested areas including in uplands and at streams or vernal pools⁴. They may use small openings or canopy gaps as well. Some research suggests that northern long-eared bats forage on forested ridges and hillsides rather than in riparian or floodplain forests. Captures from New York suggest that northern long-eared bats may also be found using younger forest types⁵. This species selects day roosts in dead or live trees under loose bark, or in cavities and crevices, and may sometimes use caves as night roosts⁶. They may also roost in buildings or behind shutters. A variety of tree species are used for roosting. The structural complexity of surrounding habitat and availability of roost trees may be important factors in roost selection⁷. Roosts of female bats tend to be large diameter, tall trees, and in at least some areas, located within a less dense canopy⁸. Northern long-eared bats hibernate in caves and mines where the air temperature is constant, preferring cooler areas with high humidity⁹.

In New York, a permit is required for the "take" of protected species under the Uniform Procedures Act that includes direct impact to the species as well as adverse modification to habitat. The New York State Department of Environmental Conservation (NYSDEC) considers impacts to "occupied" habitat as well as direct impacts to the species. NYSDEC requirements for northern long-eared bat protection are consistent with USFWS in areas that are not considered "occupied habitat". NYSDEC defines occupied habitat as those areas within five (5) miles of a known hibernacula, or 1.5 miles from a documented summer occurrence. Correspondence with the USFWS IPaC online service indicates the presence of northern long-eared bat (state and federally endangered); however, C&S completed the Determination Key for this species within IPaC which indicated that the project is not likely to adversely affect the northern long-eared bat. Further, NYSDEC guidance indicates that there are no known winter occurrences of northern

² Carroll, S. K., T. C. Carter and G. A. Feldhamer. 2002. Placement of nets for bats: effects on perceived fauna. Southeastern Naturalist 1:193-198.

³ Yates, M. and R. Muzika. 2006. Effect of forest structure and fragmentation on site occupancy of bat species in Missouri Ozark forests. Journal of Wildlife Management 70:1238-1248.

⁴ Brooks, R. T. and W. M. Ford. 2005. Bat Activity in a Forest Landscape of Central Massachusetts. Northeastern Naturalist 12:447-462.

⁵ New York Natural Heritage Program. 2016. Online Conservation Guide for Myotis septentrionalis. Available from: http://www.acris.nynhp.org/guide.php?id=7407. Accessed October 9, 2017.

⁶ U.S. Fish and Wildlife Service. 2013. 12-Month finding on a petition to list the eastern small-footed bat and the northern long-eared bat as threatened or endangered; Listing the northern long-eared bat as an endangered species; Proposed rule. Vol. 78 No.

⁷ Carter, T. C. and G. A. Feldhamer. 2005. Roost tree use by maternity colonies of Indiana bats and northern longeared bats in southern Illinois. Forest Ecology and Management 219:259-268.

⁸ Sasse, D. B. and P. J. Pekins. 1996. Summer roosting ecology of northern long-eared bats (Myotis septentrionalis) in the White Mountain National Forest. Pp. 91-101 in Proceedings of the Bats and Forests Symposium of the British Columbia Ministry of Forest.

⁹U.S. Fish and Wildlife Service. 2013. 12-Month finding on a petition to list the eastern small-footed bat and the northern long-eared bat as threatened or endangered; Listing the northern long-eared bat as an endangered species; Proposed rule. Vol. 78 No.

long-eared bat within St. Lawrence County and the only summer occurrence on record within the county is located in the Town of Hammond, approximately 49 miles southwest of the project site¹⁰. The proposed project is not considered to contain "occupied habitat" and will therefore not be subject to the incidental take permitting process.

Monarch Butterfly

The monarch butterfly can be found in varying habitats, so long as milkweed (for breeding) and flowering plants (for nectar) are present. Further, the monarch butterfly is considered a candidate species and is not listed as threatened or endangered; therefore, requirements associated with potential presence of endangered or threatened species do not apply to this species¹¹.

8.) Impacts on agricultural resources – The project is not located in a New York State Agricultural District. The total 84.4-acre site contains approximately 21.1 acres of prime farmland, 12.1 acres of prime farmland if drained, and 5.6 acres of farmland of statewide importance. No impacts to agricultural resources are anticipated to as the majority of the project site is not currently used for agriculture.

9.) Impacts on aesthetic resources – The project site does not contain, and is not located adjacent to, identified scenic/aesthetic resources. There are officially designated federal, state, or local scenic or aesthetic resources within 5 miles of the property, namely Massena Town Beach, Nicandri Nature Center, Robert Moses State Park - Thousand Islands, St. Lawrence State Park. No significant adverse impacts on the latter aesthetic resources as a result of the proposed project are anticipated.

10.) Impacts on historical and archeological resources – Coordination with the New York State Historic Preservation Office (SHPO) is complete for the project. The SHPO indicated by letter on November 10, 2022 that the project is located within an archaeologically sensitive location. SHPO therefore recommends a Phase 1A/1B archaeological survey for components of the project, particularly those involving ground disturbance. The Phase 1A/1B archaeological survey must be conducted by a 36 CFR 61 qualified archaeologist. This requirement may be waived if substantial prior ground disturbance can be documented and is approved by SHPO/OPRHP. This letter is provided as Appendix E.

A Phase I Cultural Resource survey is underway at the project site. To date, no culturally significant items have been identified. Continued coordination with SHPO and adherence to SHPO requirements will ensure no adverse impacts to historical and archaeological resources as a result of the proposed project.

11.) *Impacts on open space and recreation* – The proposed action will not result in a loss of recreational opportunities, and/or open space. The site is used for hunting only by the owner and is not open to the public. The site is not located in a designated municipal open space plan.

¹¹ U.S. Fish & Wildlife Service. N.D. *Danaus plexippus* Overview. Available from <u>https://www.fws.gov/species/monarch-butterfly-danaus-plexippus</u>. Accessed June 29, 2022.

¹⁰ NYSDEC. 2018. Northern Long-Eared Bat Occurrences by Town. Available from <u>Northern Long-eared Bat</u> <u>Occurrences by Town (ny.gov)</u>. Accessed April 7, 2023.

12.) Impacts on critical environmental areas – No designated critical environmental areas occur within or immediately adjacent to the property. The current action, as well as any future development, will not involve impacts to designated critical environmental areas.

13.) Impacts on transportation – A traffic study was conducted as part of the SEQR process, which involved analysis of the surrounding street network under existing and full build conditions. Under current conditions, the intersections associated with the study area operate at acceptable levels of service with additional capacity for an increase in traffic volumes. As stated in the traffic study, the proposed project will have minimal impacts on the study area and the associated intersections are expected to continue operation within their current level of service; therefore, no mitigation is recommended during operation of the proposed facility. The traffic impact study is included in Appendix F.

Traffic levels will increase during the anticipated thirty-seven-month construction window. These construction-related increases in observed traffic are temporary in nature and are not considered significant.

14.) *Impacts on energy* – Electricity for the project will be supplied by New York Power Authority (NYPA). This includes development of a site-specific substation. No natural gas will be supplied to the project. Water will be provided by the Village of Massena Water Department for employee use during operation. For process supply during operation, an additional 2 million gallons per day of water will be drawn from the St. Lawrence River through existing intake structures. Sewer service will be provided by the Town of Massena. The proposed project will not use public wastewater treatment facilities; approximately 600,000 gallons per day of process wastewater will be generated per day, and 675 gallons of wastewater will be treated via an onsite septic system from operations.

Operation of the new facility will result in increased use of electricity and water resources. The developer has coordinated with the local utility providers regarding supply and availability of necessary services. Operation of the facility is not expected to exceed available natural resources or future energy supplies.

Additionally, construction and/or operation of the facilities would not involve a need for unusual materials or those in short supply. As with any construction project, there will be short-term increases in electrical and gasoline usage to power construction equipment and for worker travel.

15.) Impacts on noise, odor, and light

Noise - The proposed project will cause a temporary increase in ambient noise levels from the operation of construction equipment. Measures to minimize noise impacts during construction will include adherence to local ordinances for working hours and inspection of equipment for proper muffling. After construction, the site will be established as a Green Hydrogen Facility development and operation noise is anticipated at the level of this use. Operational noise levels are not anticipated to exceed thresholds set in local ordinances.

Odors - The proposed project will not cause an increase in odors.

Light –Lighting will not impact adjacent properties and will be dark sky compliant. Parking lot fixtures will comply with the Town of Massena regulations.

16.) Impact on Human Health – The proposed project will not result in an impact to human health from exposure to new or existing sources of contaminants. No use of pesticides or herbicides are involved in the proposed project. In addition, the project operation does not use or produce materials considered hazardous substances, and therefore will not create a condition increasing the adjacent public's exposure to harmful materials.

17.) Consistency with community plans – The action will not result in population growth in the Town of Massena that exceeds 5%, and will not result in increasing density that will impact existing infrastructure. The project is does not require a change in zoning. Project activities will continue to be coordinated with the Town of Massena Planning Board in order to ensure consistency with local zoning and land use requirements. This may include minor changes to the proposal. It is not anticipated that minor deviations that are required during the Town of Massena Planning Board review will necessitate changes to information contained herein. Given the project will require consistency with the Town's requirements, no significant impacts associated with community plans are anticipated.

In summary, the proposed project will not result in the following:

- I. Increase in population within the Town of Massena;
- II. Require a change in zoning or existing land use plans;
- III. Change in the density of development that would exceed the capacity of existing infrastructure; or
- IV. Result in induced socioeconomic impacts from residential or commercial development

18.) Consistency with community character – The proposed action is consistent with the existing community character as described in the following bullets:

- I. The project is located in an area with buildings of similar size and industrial nature;
- II. No impacts to historic structures;
- III. It will not significantly increase the need for schools, parks, roads, infrastructure;
- IV. It will not result in a significant increase in the need for emergency services; and
- V. No displacement of housing will occur.

<u>Appendix A</u> NYSDEC SEQR Correspondence

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Permits, Region 6 Dulles State Office Building, 317 Washington Street, Watertown, NY 13601-3787 P: (315) 785-2245 | F: (315) 785-2242 www.dec.ny.gov

APRIL 3, 2023

BRYAN BAYER C&S ENGINEERS, INC. 499 COL. EILEEN COLLINS BLVD. SYRACUSE, NY 13212

RE: Town of Massena Air Products & Chemicals, Inc. – Massena Green Hydrogen Facility State Environmental Quality Review (SEQR) Coordination Town of Massena, St. Lawrence County

Dear Bryan Bayer:

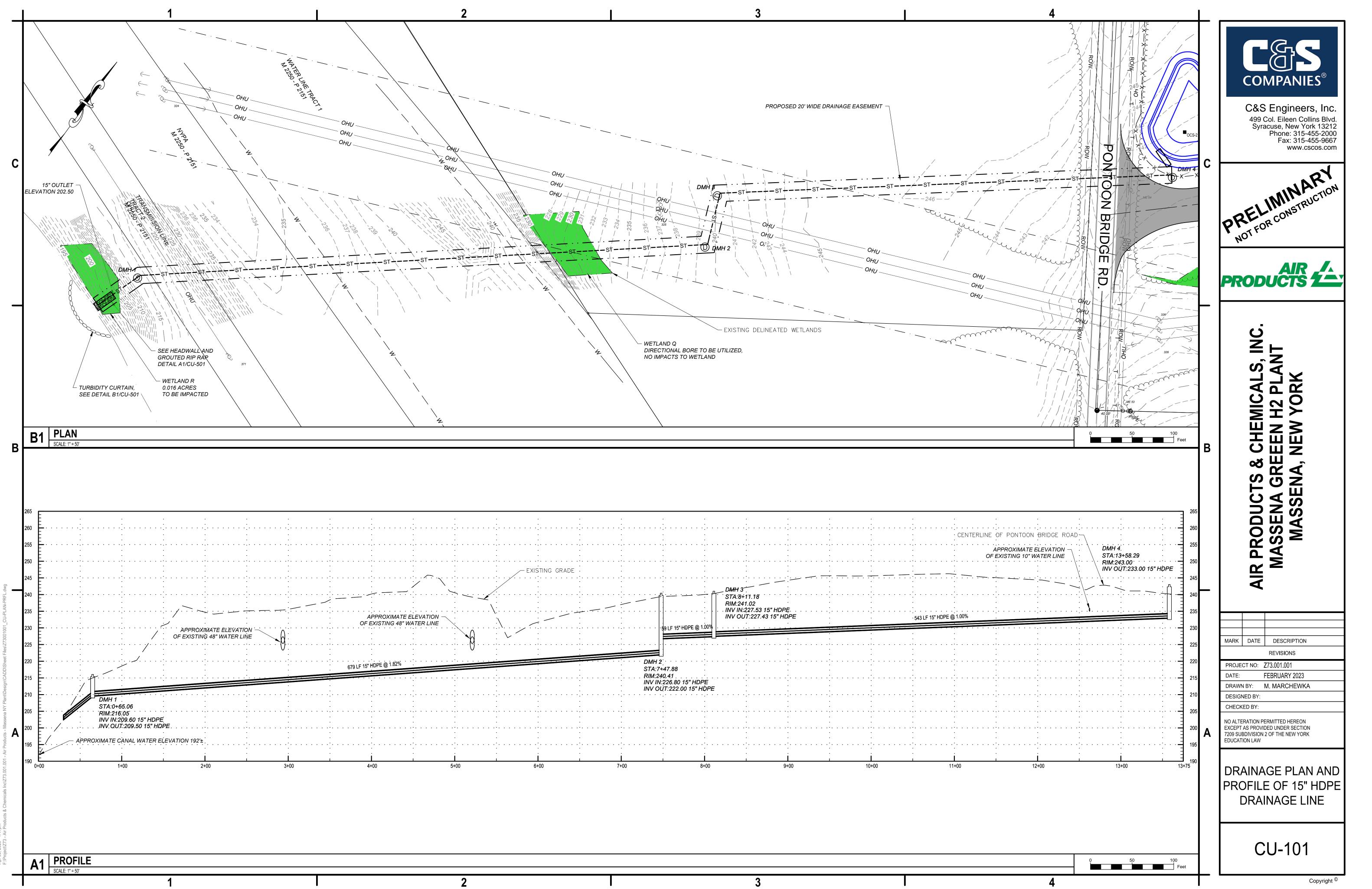
We received your letter on March 17, 2023 regarding the proposed project listed above. The department has no objection to the Town of Massena Planning Board acting as lead agency for the above project. Below are comments from our Program Staff:

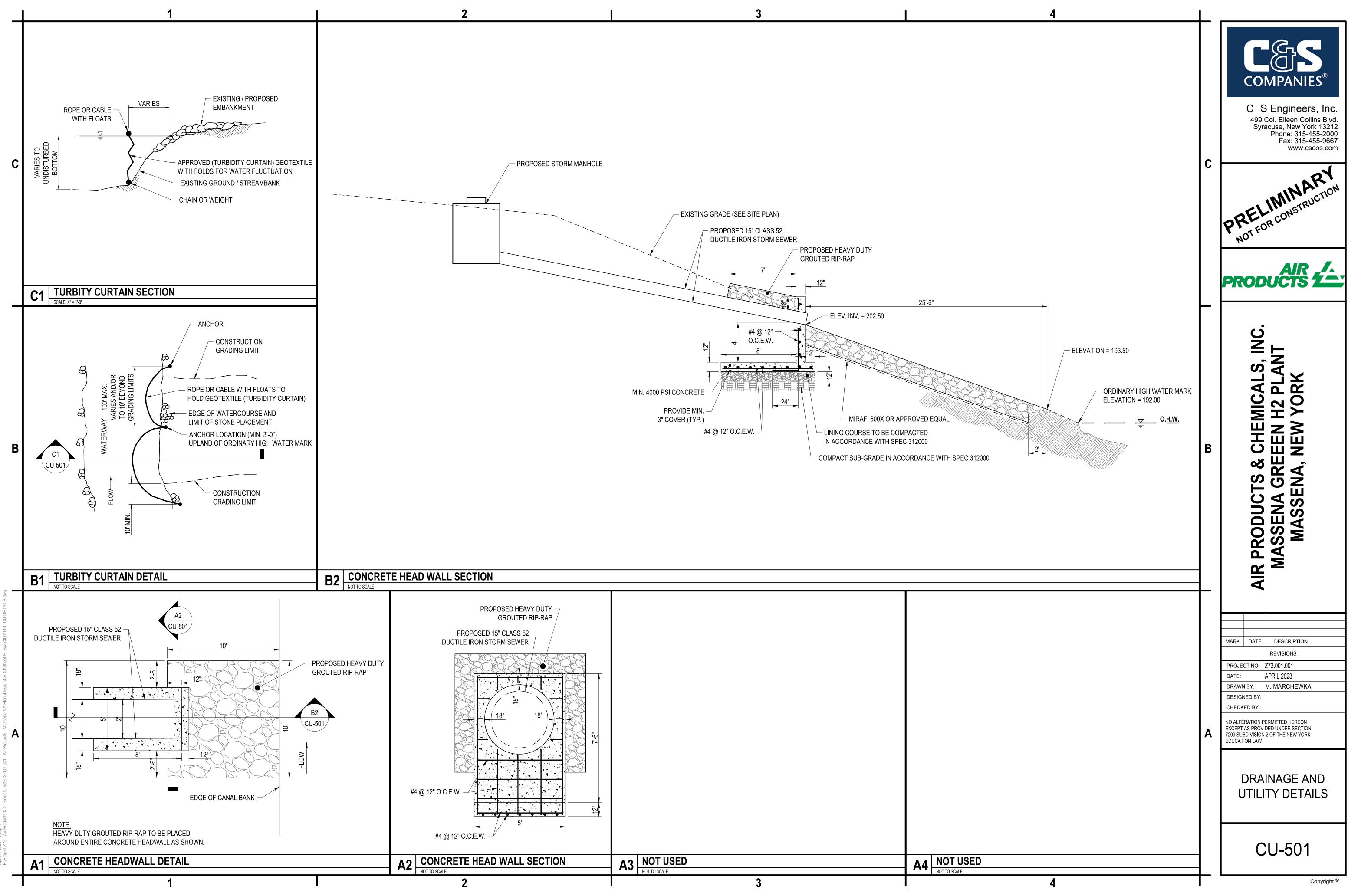
- 1. An Article 24 wetlands permit will be required for any work completed within State Regulated Wetland MA-1 and it's 100" Regulated Adjacent Area. The wetland located to the North/North West of the project site near the proposed retention pond is currently unregulated by the New York State Department of Environmental Conservation(DEC). On January 1, 2025, the DEC's wetland regulations will be changing and this wetland may become jurisdictional. This would mean that an Article 24 permit would be required for the construction of the retention pond and any work within the wetland and the 100' Regulated adjacent area.
- 2. This project will require a Construction Stormwater Permit.
- 3. If the project disturbs greater than 5 acres at any one time, authorization is required from the Regional Water Engineer prior to disturbing greater than 5 acres.
- 4. Any new connection to an existing water system must be reviewed and approved by the water service provider to certify their ability and willingness to serve the proposed area. In addition, a Water Withdrawal Permit may be required. Please contact Rachel Bernat at (315) 785-2515.
- 5. A NY-2C application for New Industrial facilities is required for State Pollutant Discharge Elimination System permitting . An engineering report describing the type of industrial process and treatment process(es) that are being proposed must accompany the NY-2C application.
- 6. Design documents (report, plans & specs) must be submitted for DEC review once the SPDES permit is issued.

- 7. Section D.1.4 does the proposed action include construction or other activities that will result in the impoundment of any liquids, such as a creation of a water supply, reservoir, pond, lake, waste lagoon, or other storage? Application states NO, yet the site drawings indicate a retention pond on the north section of the property. Can the applicant please provide clarification?
- 8. Section D.2.C.v states process supply 2MGPD will be obtained from the St. Lawrence River through existing intake structures. Can the applicant elaborate on location and design of existing intake structures as they are not clear on the site plans or EAF?
- Section D.2.D.ii The proposed action will generate .6MGPD process waste water and 675 gallons of employee waste water (to be treated via onsite septic). Can the applicant describe water quality parameters of the proposed .6MGPD process waste water (e.g. temperature of waste water, other descriptors of wastewater from the electrolysis process)?
- 10. The site plans indicate a proposed discharge line will extend to the Massena Power Canal (Fisheries Index Number SL-1-6A1 [unnamed water]) but don't mention that in the proposed actions section of the EAF. Can the applicant please verify this is correct and elaborate on the size and design of the proposed discharge line?

We cannot provide a definitive statement as to the presence or absence of all rare or state-listed species or significant natural communities. This information should not be substituted for on-site surveys that may be required for environmental impact assessment. Depending on the nature of the project and the conditions at the project site, further information from on-site surveys or other sources may be required to fully assess impacts on biological resources.

Our databases are continuously being updated and amended. If this proposed project is still under development one year from now, we recommend that you contact us again so that we may update this response with the most current information.


Thank you for contacting us regarding this matter. If you have any questions with this letter, I can be reached at (315) 785-2245 or <u>donna.iloff@dec.ny.gov</u>.


Sincerely,

Donna Aloff

Donna lloff Program Aide Region 6

<u>Appendix B</u> Discharge Line Plans, Profile, and Detail Sheets

<u>Appendix C</u> Wetland & Waterway Delineation Report

Wetland & Waterway Delineation Report

Air Products & Chemicals Inc. Massena Green Hydrogen Facility Town of Massena St. Lawrence County, New York

Prepared for:

Jonathan Traynor Sr. Project Manager – Project Execution Air Products & Chemicals Inc. 1940 Air Products Boulevard Allentown, PA 18106-5500

November 4, 2022

Table of Contents

1.0	Introduction
1.1	Project Location
2.0	Methods2
2.1	Desktop Evaluation
3.0	Field Surveys
3.1	Wetlands
3.2	Wetland Manual Differences
3.3	Streams
3.4	Ditches – Federal Jurisdiction
4.0	Results
4.1	Desktop Evaluation6
4.2	Field Surveys
5.0	Conclusion

List of Figures

Figure 1 – Project Location Map	3
Figure 2 – NYSDEC Wetlands & Stream Map	7
Figure 3 – USFWS NWI Map	8
Figure 4 – USDA NRCS Soils Map	10
Figure 5 – FEMA 100-Year Flood Map	11
Figure 6 – Wetlands & Surface Waters Delineation Map	12

Appendices

Appendix A: USACE Wetland Data Sheets Appendix B: Web Soil Survey Appendix C: Photographs

1.0 Introduction

Air Products & Chemicals Inc. is proposing development of the Massena Green Hydrogen Facility (hereinafter "Project") located along Pontoon Bridge Road in the Town of Massena, St. Lawrence County, New York. The Project includes the development of 82 - acres of property. C&S Engineers, Inc. (C&S) was tasked with conducting a wetland and waterway delineation for the 82-acre site (hereinafter referred to as "Area of Interest" of "AOI)". C&S performed the on October 5 and 6, 2022. The delineation is prepared consistent with the United States Army Corps of Engineers (USACE) and New York State Department of Environmental Conservation (NYSDEC). This report outlines review of published resource materials, existing site conditions, and the results of field investigations.

1.1 Project Location

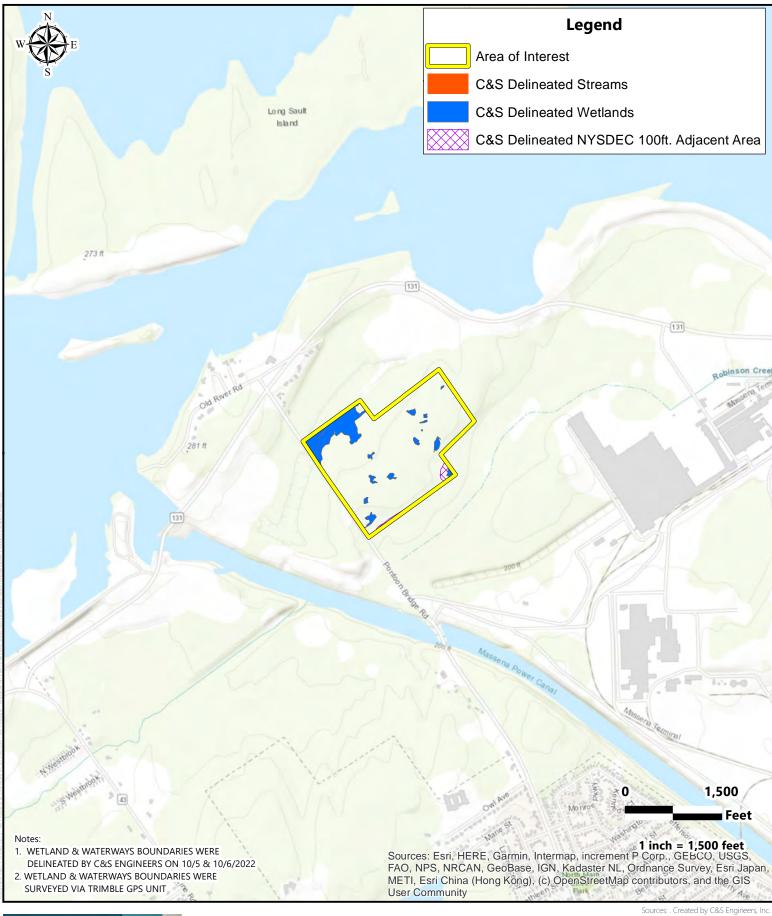
The AOI is 82.19 acres in size and located east of Pontoon Bridge Road in the Town of Massena, St. Lawrence County, NY. The site occurs within the Robinson Creek-Frontal Saint Lawrence River (USGS Cataloging Unit: 0415031002).

2.0 Methods

2.1 Desktop Evaluation

Prior to field survey, C&S reviewed various maps and other sources of information to determine onsite areas that contain aquatic resources. These include:

- United States Geological Survey (USGS) topographic maps
- National Wetlands Inventory (NWI) Maps prepared by the U.S. Fish and Wildlife Service (USFWS)
- Freshwater Wetland Maps prepared by the NYSDEC
- Stream Classification Maps prepared by the NYSDEC
- Soil Survey Geographic Database (SSURGO) Soils Map prepared using U.S. Department of Agriculture Natural Resources Conservation Service Soil Survey Geographic Database
- Federal Emergency Management Agency (FEMA) Floodplain Maps


The above references are used initially to identify areas with potential to contain wetlands and streams.

3.0 Field Surveys

3.1 Wetlands

C&S completed wetland delineations within the AOI on October 5 and 6, 2022. During field surveys, dominant flora species, hydrologic features, and soil conditions are recorded.

Wetlands boundaries are delineated using criteria for vegetation, soils, and hydrology as specified in the 1987 Corps of Engineers Wetland Delineation Manual (USACE 1987) (hereinafter referred to as the USACE Manual) and the 2012 Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region, Version 2.0 (Regional Supplement) (USACE 2012). New York State regulated wetlands are mapped adjacent to the AOI. As such, the aquatic resource delineation is completed consistent with the 1995 NYSDEC Freshwater Wetlands Delineation Manual (NYSDEC 1995).

Cos

Figure 1 Project Location Map

Air Products & Chemicals Inc. Massena Green Hydrogen Facility Town of Massena, St. Lawrence County, NY

Locations of wetland delineation flags are mapped in the field using a Trimble Global Positioning System (GPS). Wetland flags/points are placed and coordinates are recorded via GPS along the wetland boundaries based on observations of hydrophytic vegetation, hydric soils, and hydrology conditions. These observations are made throughout the hydrologic condition continuum to verify the wetland boundary is sufficiently identified. Each wetland is assigned a letter designation, and each wetland flag is labeled with the letter assigned to the wetland and numbered consecutively. All GPS code phase data captured in the field are post-processed (differential correction) using Trimble's Pathfinder Office software. Wetland polygons are created in Geographic Information System (GIS) shapefiles and incorporated on Project base maps for the preparation of report figures. Wetland areas are calculated using Environmental Systems Research Institute ARCGIS ARCView.

Formal wetland determination data forms are completed in the field to document justification for the wetland boundary as delineated (Appendix A). These forms are prepared consistent with the Regional Supplement, and include information pertaining to hydrology, vegetation, and soils for each wetland within the Project AOI.

Vegetation is characterized consistent with the Regional Supplement, and recorded in plots as required by the USACE. Scientific nomenclature for plant species and the indicator status for each plant species occurring within the wetland sampling plot is determined using National Wetland Plant List: 2016 Update of Wetland Ratings (Lichvar et al. 2016). Soil characteristics and hydrology data are observed and collected at test pits within the vegetative plots. The pits are excavated by hand to a depth of 20 inches below grade consistent with the USACE Manual. The presence of hydric soil indicators is determined by describing pertinent characteristics of the soil sample. Soil colors are determined using the Munsell® soil color charts (2000 Edition, Gretag Macbeth, Division of Kollmorgen Instruments Corporation, New Windsor, New York). Hydric soil characteristics such as organic soil layers, reducing conditions, gleying, low-chroma mottles, and concretions are noted. Primary and secondary indicators of hydrology are also noted at each sample plot.

A wetland determination is made at each sample plot after characterizing vegetation, hydrology, and soil. If the vegetation, hydrology, and hydric soil criteria are met, the area is deemed a wetland. If one or more of the criteria are not met, the area is determined to be non-wetland. Completed wetland determination sheets for each representative soil pit are included in Appendix A.

Wetlands identified are further classified consistent with the *Classification of Wetlands and Deepwater Habitats of the United States* (Cowardin et al. 1979). Wetlands identified are further classified consistent with the *Classification of Wetlands and Deepwater Habitats of the United States* (Cowardin et al. 1979). The jurisdictional status of delineated features is identified consistent with the *2008 Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States & Carabell V. United States* memorandum prepared by the United States Environmental Protection Agency and USACE, and the associated guidance document entitled the *U.S. Army Corps of Engineers Jurisdictional Determination Form Instructional Guidebook* dated May 30, 2007.

3.2 Wetland Manual Differences

The NYSDEC manual and the USACE Manual/Regional Supplement are similar with regard to identifying wetland boundaries; however there are a few significant differences. The first difference is that the NYSDEC Manual states that if an area meets certain requirements regarding prevalence of wetland vegetation, the area can be considered a wetland without detailed investigation of hydrology and soils. If the wetland vegetation requirements are not met, but more than 50 percent of the dominant species prefer wetland habitats; then an investigation and verification of hydrology and/or hydric soils is required to locate a wetland boundary. The second difference is that the Regional Supplement has established additional methods for determining the dominance of hydrophytic vegetation, additional indicators of wetland hydrology, and additional hydric soils criteria that exceed those identified in the USACE and NYSDEC Manuals. These additional indicators could result in differences of wetland boundaries. In the instance the two wetland boundaries are not consistent as a result of the differences in manuals; the discrepancy between the two will be described within the results section of this report. This summary will include a discussion of the reason for the different boundaries.

3.3 Streams

Stream delineations were completed within and immediately adjacent the AOI. The federally regulated Ordinary High Water (OHW) mark of streams within the Project AOI are delineated using the definitional criteria as presented in Title 33, Code of Federal Regulations, Part 328, and the USACE Regulatory Guidance Letter 05-05 – Guidance on Ordinary High Water Mark Identification. Each stream is categorized in regard to its flow regime as perennial, intermittent, or ephemeral, as defined by the USACE. The OHW mark for each stream is mapped using the Trimble GPS.

Streams in the State of New York are protected by Article 15 Use and Protection of Waters. Streams are given classifications that designate the level of protection afforded to each waterbody. Each waterbody identified within the AOI is classified according to Article 15. The waterbody classification categories are AA, A, B, C or D depending on their designated level of protection. Waters with classifications A, B, and C may also have a standard of (T), indicating that it may support a trout population, or (TS), indicating that it may support trout spawning (TS). Streams with a designation of C(T) or higher are considered "protected" waters of New York State.

Stream boundaries are mapped using Trimble GPS units with sub-meter accuracy. Stream lengths are calculated in linear feet using Environmental Systems Research Institute ARCGIS ARCView. The jurisdictional status of delineated features is identified consistent with the 2008 Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States & Carabell V. United States memorandum prepared by the United States Environmental Protection Agency and USACE, and the associated guidance document entitled the U.S. Army Corps of Engineers Jurisdictional Determination Form Instructional Guidebook dated May 30, 2007.

3.4 Ditches – Federal Jurisdiction

The jurisdictional status of ditches identified is consistent with the 2008 Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in Rapanos v. United States & Carabell V. United States memorandum prepared by the United States Environmental Protection Agency and USACE, and the

associated guidance document entitled the U.S. Army Corps of Engineers Jurisdictional Determination Form Instructional Guidebook dated May 30, 2007.

4.0 Results

4.1 Desktop Evaluation

Resource mapping used during the desktop review are provided in Figures 1 through 5. Figure 1 depicts the AOI on USGS topographic mapping. Figure 2 provides NYSDEC mapped resources within the AOI. Figure 3 provides NWI mapping, and Figure 4 provides soil survey information. Figure 5 depicts FEMA mapped floodplains within the vicinity of the AOI. A summary of information gathered during the desktop analysis is provided herein.

4.1.1 Topography and Drainage

The Project site appears on the Massena U.S. Geological Survey (USGS) 7.5-minute topographic quadrangle map (See Figure 1). The AOI is located east of Pontoon Bridge Road in the Town of Massena, St. Lawrence County within the USGS topographic map. Elevations range from 200 feet above mean sea level (amsl) in the northern portion of the site, 230 feet amsl in the southern portion of the site and 250 feet amsl in the middle portion of the site (North American Vertical Datum of 1988 [NAVD 88]).

4.1.2 New York State Mapped Resources

Article 24 of the Environmental Conservation Law requires the NYSDEC to map freshwater wetlands subject to jurisdiction of the law. Article 24 Freshwater Wetland Maps show the approximate location of the wetland boundary and the unique alpha numeric wetland identification number assigned to each resource. Due to the scale of the mapping and aerial photography used to produce the wetland boundaries, they are suitable for general planning purposes only. Based on the Freshwater Wetland Maps and the field review, NYSDEC wetland MA-1 is a class 2 wetland that is adjacent to the AOI. There are no streams within or adjacent to the AOI (See Figure 2).

4.1.3 National Wetlands Inventory Map

The NWI map identifies one mapped wetland, PSS1Cd, within the northern part of the AOI (See Figure 3). PSS1Cd is a palustrine, scrub/shrub, broad-leaved deciduous, seasonally flooded, partially drained/ditched wetland. Note that NWI maps were derived from aerial photo interpretation and are suitable for general planning purposes only; they typically do not show all the wetland or watercourse resources within any given area.

- Area of Interest
- C&S Delineated Streams
- C&S Delineated Wetlands
- C&S Delineated NYSDEC 100ft. Adjacent Area
- NYSDEC Streams
 - NYSDEC Freshwater Wetlands

MA-1

1

RR-15

2,300

1 inch = 2,300 feet

Sources: . Created by C&S Engineers, Inc.

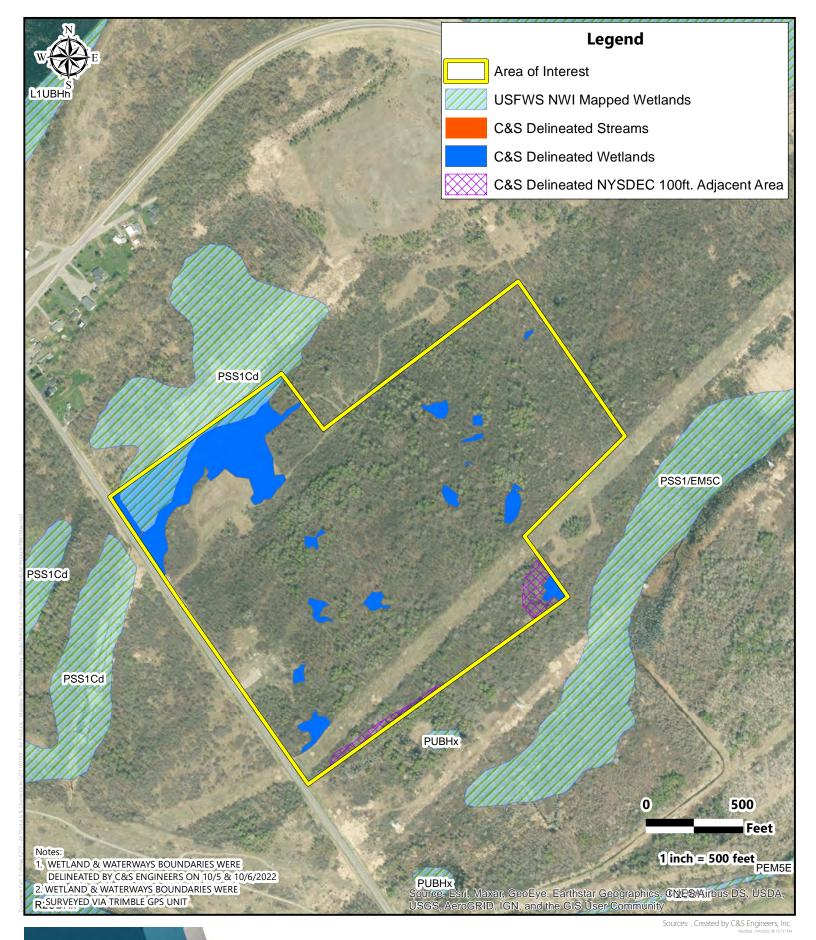
Feet

MA-3 Notes: 1. WETLAND & WATERWAYS BOUNDARIES WERE DELINEATED BY C&S ENGINEERS ON 10/5 & 10/6/2022 2. WETLAND & WATERWAYS BOUNDARIES WERE SURVEYED VIA TRIMBLE GPS UNIT

 NYSDEC Freshwater Wetlands &

 Figure 2
 Stream Classification Map

MA-3


Air Products & Chemicals Inc. Massena Green Hydrogen Facility Town of Massena, St. Lawrence County, NY

MA-2

0

Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA BRID, IGN, and the GIS User Community

Figure 3 USFWS NWI Wetlands Map

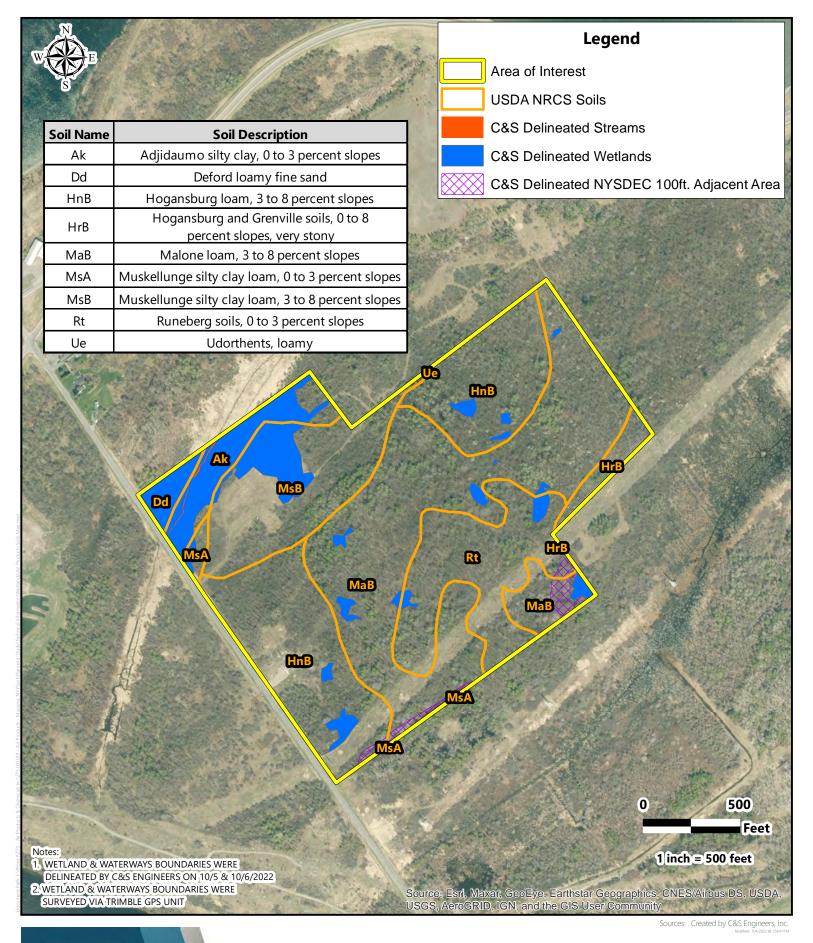
Air Products & Chemicals Inc. Massena Green Hydrogen Facility Town of Massena, St. Lawrence County, NY

4.1.4 Soil Survey

Nine unique soil series are mapped within the AOI as depicted in Figure 4. Eight of the soils contain hydric components. Table 1 provides the hydric rating, and acreage of the soils mapped on site. The hydric rating by map unit provided by the USDA NRCS Web Soil Survey is provided as Appendix B.

Soil map unit	Hydric rating	Acres of soil within AOI	Percent of soil within AOI
Ak – Adjidaumo silty clay, 0 to 3 percent slopes	93	4.4	5.3%
Dd – Deford loamy fine sand	90	1.2	1.4%
HnB - Hogansburg loam, 3 to 8 percent slopes	0	21.1	25.7%
HrB - Hogansburg and Grenville soils, 0 to 8 percent slopes, very stony	3	1.6	1.9%
MaB - Malone loam, 3 to 8 percent slopes	3	30.5	37.1%
MsA - Muskellunge silty clay loam, 0 to 3 percent slopes	5	0.6	0.7%
MsB - Muskellunge silty clay loam, 3 to 8 percent slopes	5	11.5	14.0%
Rt - Runeberg soils, 0 to 3 percent slopes	96	11.3	13.8%
Ue - Udorthents, loamy	1	<0.1	<0.1%

Table 1	Web Soil	Summary	/ in	the AOI
		Summary		the AOI

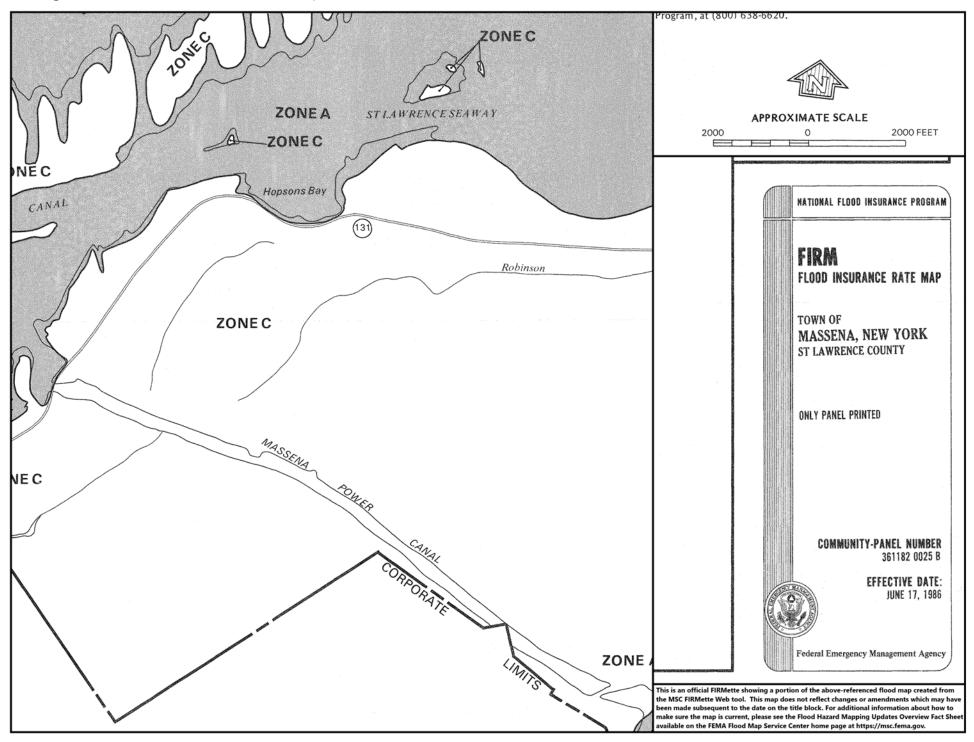

4.1.5 FEMA Floodplain Map

The FEMA floodplain map (See Figure 5) depicts there are no regulatory floodways within the AOI.

4.2 Field Surveys

4.2.1 Wetlands

C&S delineated 14 wetlands within the AOI referred to as Wetlands A, B, C, D, E, F, G, T, U, V, W, X, Y and Z. The boundaries of the delineated wetlands are included in Figures 6. Wetlands A, B, E, F and T are categorized as palustrine scrub-shrub (PSS) wetlands consistent with the *Classification of Wetlands and Deepwater Habitats of the United States* (Cowardin et al. 1979) (hereinafter referred to as Cowardin). Wetlands C, D, G and U are palustrine emergent (PEM) wetlands consistent with Cowardin. Wetlands V, W, X and Y are a palustrine forested (PFO) wetland consistent with Cowardin. Wetland Z is a PEM/PSS wetland complex consistent with Cowardin. The boundaries of on-site wetlands within and adjacent to the AOI are delineated consistent with the USACE and NYSDEC manual. Table 2 provides a summary of the wetland identified during the field investigation. Photographs of the wetland identified is provided in Appendix C.



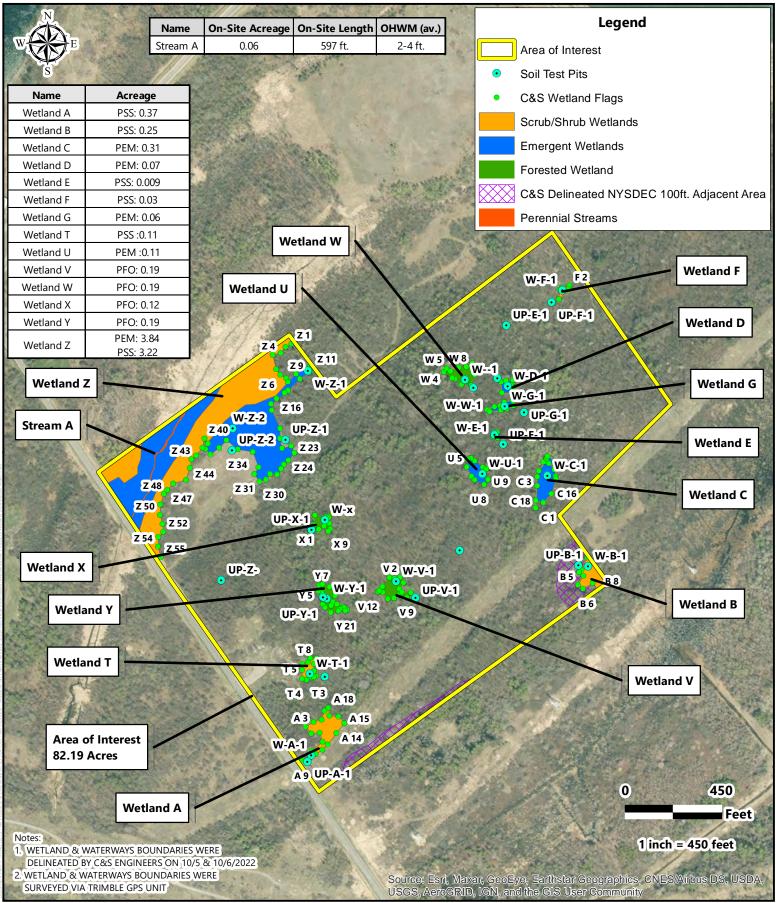


Figure 4 USDA NRCS Soils Map

Air Products & Chemicals Inc. Massena Green Hydrogen Facility Town of Massena, St. Lawrence County, NY

Sources: . Created by C&S Engineers, Inc.

Figure 6 , C&S Delineated Wetlands & Surface Waters Map

Air Products & Chemicals Inc. Massena Green Hydrogen Facility Town of Massena, St. Lawrence County, NY

Wetland Id	Cowardin Community Type	Agency Jurisdiction	Latitude/ Longitude Coordinates	Acreage in AOI
А	PSS	No Jurisdiction	44.957656 N -74.910435 W	PSS: 0.37
В	PSS	USACE/NYSDEC	44.959525 N -74.905572 W	PSS: 0.25
С	PEM	No Jurisdiction	44.960762 N -74.906358 W	PEM: 0.31
D	PEM	No Jurisdiction	44.961983 N -74.907021 W	PEM: 0.07
E	PSS	No Jurisdiction	44.961344 N -74.907245 W	PSS: 0.009
F	PSS	No Jurisdiction	44.963222 N -74.905957 W	PSS: 0.03
G	PEM	No Jurisdiction	44.961736 N -74.907110 W	PEM: 0.06
т	PSS	No Jurisdiction	44.958390 N -74.910742 W	PSS: 0.11
U	PEM	No Jurisdiction	44.960926 N -74.907607 W	PEM: 0.11
V	PFO	No Jurisdiction	44.95946 N -74.909150 W	PFO: 0.19
W	PFO	No Jurisdiction	44.962155 N -74.907797 W	PFO: 0.19
Х	PFO	No Jurisdiction	44.960325 N -74.910378 W	PFO: 0.12
Y	PFO	No Jurisdiction	44.959347 N -74.910345 W	PFO: 0.19
Z	PEM/PSS	USACE	44.961627 N -74.912601 W	PEM: 3.84 PSS: 3.22
		TOTAL		9.07 acres

Table 2. Wetland Delineation Summary in the AOI

The PEM, PSS and PFO Cowardin classes are defined below:

PEM – This aquatic resource is a palustrine emergent wetland. Vegetation is comprised of erect, rooted, herbaceous hydrophytes, excluding mosses and lichens. This vegetation is present for most of the growing season in most years. These wetlands are usually dominated by perennial plants.

PSS – This aquatic resource is a palustrine scrub-shrub wetland. Vegetation is predominantly woody with true shrubs, young trees, and trees or shrubs less than 6 meters (20 feet) tall.

PFO – This aquatic resource is a palustrine forested wetland. The wetland is characterized by broad-leaved deciduous woody trees and shrubs.

Below are descriptions of the wetlands that are within the AOI:

Wetland A (PSS): The woody vine stratum is absent from this wetland. The tree stratum is dominated by green ash (*Fraxinus pennsylvanica*). The shrub stratum is dominated by buckthorn (*Rhamnus cathartica*), grey dogwood (*Cornus racemosa*) and grey willow (*Salix bebbiana*). The herbaceous stratum is dominated by reed canary grass (*Phalaris arundinacea*), soft rush (*Juncus effusus*), Canada goldenrod (*Solidago canadensis*) and late goldenrod (*Solidago gigantea*). The primary hydrologic indicator observed was oxidized rhizospheres on living roots (C2). The secondary hydrologic indicators observed are saturation visible on aerial photography (C9) and a positive FAC-neutral test (D5). The soil hydric indicator F6-redox dark surface was observed and met.

Wetland B (PSS): The tree and woody vine stratum is absent from this wetland. The shrub stratum is dominated by nannyberry (*Viburnum lentago*). The herbaceous stratum is dominated by hop sedge (*Carex lupulina*) and sensitive fern (*Onoclea sensibilis*). The secondary hydrologic indicators observed were drainage patterns (B10) and a positive FAC-neutral test (D5). The soil hydric indicator A11 – depleted below dark surface, F3-depleted matrix and F8- redox depressions were observed and met.

Wetland C (PEM): The tree and woody vine stratum are absent from this wetland. The shrub stratum is dominated by silky dogwood (*Cornus amomum*) and grey willow. The herbaceous stratum is dominated by sweetflag (*Acorus calamus*), broad-leaved cattail (*Typha latifolia*), devils- pitchfork (*Bidens frondosa*). The primary hydrologic indicator observed were high water table (A2), saturation (A3) and inundation visible on aerial imagery (B6). The secondary hydrologic indicator observed was a positive FAC-neutral test (D5). The soil hydric indicator A11 – depleted below dark surface, F3-depleted matrix and F8- redox depressions were observed and met.

Wetland D (PEM): The shrub and woody vine stratum is absent from this wetland. The tree stratum is dominated by green ash. The herbaceous stratum is dominated by false nettle (*Boehmeria cylindrica*), pinkweed (*Persicaria pensylvanica*) and mild water-pepper (*Persicaria hydropiper*). The primary hydrologic indicator observed were sparsely vegetated concave surface (B8) and oxidized rhizospheres on living roots (C2). The secondary hydrologic indicators observed was a positive FAC-neutral test (D5). The soil hydric indicator F6-redox dark surface and F8 – redox depressions were observed and met.

Wetland E (PSS): The tree and woody vine stratum are absent from this wetland. The shrub stratum is dominated by green ash. The herbaceous stratum is dominated by creeping jenny (*Lysimachia nummularia*) and shallow sedge (*Carex lurida*). The primary hydrologic indicator observed were sparsely vegetated concave surface (B8). The secondary hydrologic indicator observed were saturation visible on aerial imagery (C9) and a positive FAC-neutral test (D5). The soil hydric indicator A11 – depleted below dark surface, F3-depleted matrix and F8- redox depressions were observed and met.

Wetland F (PSS): The tree and woody vine stratum are absent from this wetland. The shrub stratum is dominated by green ash, buckthorn and silky dogwood. The herbaceous stratum is dominated by sensitive fern and water-horehound (*Lycopus americanus*). The primary hydrologic indicator observed was oxidized rhizospheres on living roots (C2). The secondary hydrologic indicators observed were drainage patterns (B10) and a positive FAC-neutral test (D5). The soil hydric indicators A11 – depleted below dark surface, F3-depleted matrix, F6 – redox dark surface and F8- redox depressions were observed and met.

Wetland G (PEM): The tree, shrub and woody vine stratum are absent from this wetland. The herbaceous stratum is dominated by false nettle. The primary hydrologic indicator observed were observed were indentation visible on aerial imagery, sparsely vegetated concave surface (B8) and oxidized rhizospheres on living roots (C2). The secondary hydrologic indicators observed was positive FAC-neutral test (D5). The soil hydric indicators F6 – redox dark surface and F8- redox depressions were observed and met.

Wetland T (PSS): The tree stratum is dominate by green ash. The shrub stratum is dominated by buckthorn and red osier dogwood (*Cornus alba*). The herbaceous stratum is dominated by broadleaf cattail and common boneset (*Eupatorium perfoliatum*). The woody vine stratum is dominated by fox grape (*Vitis labrusca*) and black nightshade (*Solanum ptychanthum*). The primary hydrologic indicator observed was oxidized rhizospheres on living roots (C2). The secondary hydrologic indicator observed were saturation visible on aerial imagery (C9) and a positive FAC-neutral test (D5). The soil hydric indicator F6 – redox dark surface was observed and met.

Wetland U (PEM): The tree stratum is dominate by silver maple (*Acer saccharinum*) and eastern cottonwood (*Populus deltoides*). The shrub stratum is dominated by common buttonbush and silky dogwood. The herbaceous stratum is dominated by broadleaf cattail, sensitive fern, mild water pepper, cottongrass bulrush (*Scirpus cyperinus*) and yellow marsh marigold (*Caltha palustris*). The woody vine stratum is dominated by fox grape. The primary hydrologic indicator observed was oxidized rhizospheres on living roots (C2). The secondary hydrologic indicator observed were saturation visible on aerial imagery (C9) and a positive FAC-neutral test (D5). The soil hydric indicators A11 – depleted below dark surface and F3-depleted matrix were observed and met.

Wetland V (PFO): The tree stratum is dominate by green ash, American elm (*Ulmus americana*), American basswood (*Tilia americana*) and northern red oak (*Quercus rubra*). The shrub stratum is dominated by buckthorn. The herbaceous stratum is dominated by sensitive fern. The woody vine stratum is dominated by fox grape. The primary hydrologic indicator observed was oxidized rhizospheres on living roots (C2). The secondary hydrologic indicator observed was saturation visible on aerial imagery (C9). The soil hydric indicators A11 – depleted below dark surface and F3-depleted matrix were observed and met.

Wetland W (PFO): The tree stratum is dominate by green ash and American elm. The shrub stratum is dominated by buckthorn and honeysuckle (*Lonicera morrowii*). The herbaceous stratum is dominated by sensitive fern. The primary hydrologic indicator observed was oxidized rhizospheres on living roots (C2). The secondary hydrologic indicator observed was a positive FAC-neutral test (D5). The soil hydric indicators A11 – depleted below dark surface and F3-depleted matrix were observed and met.

Wetland X (PFO): The tree stratum is dominate by green ash. The shrub stratum is dominated by buckthorn. The herbaceous stratum is dominated by sensitive fern. The primary hydrologic indicator observed was oxidized rhizospheres on living roots (C2). The secondary hydrologic indicator observed was a positive FAC-neutral test (D5). The soil hydric indicator A11 – depleted below dark surface was observed and met.

Wetland Y (PFO): The tree stratum is dominate by green ash. The shrub stratum is dominated by buckthorn. The herbaceous stratum is dominated by common three seeded mercury (*Acalypha rhomboidea*) and American water plantain (*Alisma subcordatum*). The primary hydrologic indicator observed were high water table (A2), saturation (A3) oxidized rhizospheres on living roots (C2). The secondary hydrologic indicator observed was a positive FAC-neutral test (D5). The soil hydric indicators A11 – depleted below dark surface, F3-depleted matrix and F6 – redox dark surface were observed and met.

Wetland Z (PEM/PSS): The tree stratum is dominate by green ash, pin oak (*Quercus palustris*) and paper birch (*Betula papyrifera*). The shrub stratum is dominated by buckthorn, honeysuckle, grey dogwood and red osier dogwood. The herbaceous stratum is dominated by reed canary grass, purple loosestrife (*Lythrum salicaria*), late goldenrod, wrinkle-leaf goldenrod (*Solidago rugosa*) and common boneset. The primary hydrologic indicator observed was oxidized rhizospheres on living roots (C2). The secondary hydrologic indicator observed was a positive FAC-neutral test (D5). The soil hydric indicators A11 – depleted below dark surface, F3-depleted matrix and F6 – redox dark surface were observed and met.

4.2.2 Streams and Open Waters

The field survey resulted in one stream (referred to as Stream A) identified within the AOI and summarized in Table 3. Stream A is encompassed by Wetland Z. Photographs of the stream identified is provided in Appendix C. The boundary of the delineated stream is included in Figures 6.

		Stream Denneation 5	animary in the Aor	
Stream Id	Stream Classification	Agency Jurisdiction	Length and Width in AOI (Feet)	Acreage in AOI
А	Perennial	USACE	Length – 597 Width – 2-4	0.06

Table 3. Stream Delineation Summary in the AOI

No non-relatively open waterways (RPWs) are identified within the project limits.

No open waters were delineated during the field survey.

4.2.3 Ditches

No ditches were identified within the AOI.

5.0 Conclusion

C&S was retained by Air Products & Chemicals Inc. to complete a wetland and waterway survey for the proposed project. Wetland areas were assessed as waters of the U.S. subject to USACE and NYSDEC. These features are also classified consistent with the *Classification of Wetlands and Deepwater Habitats of the United States* (Cowardin et al. 1979).

Fourteen wetlands (Wetlands A, B, C, D, E, F, G, T, U, V, W, X, Y and Z.) were delineated by C&S in the AOI within the Robinson Creek-Frontal Saint Lawrence River (USGS Cataloging Unit: 0415031002).

- Wetland A is PSS feature totaling 0.37 acres within the AOI. This wetland is a closed depressional wetland with no direct connection to a traditionally navigable water (TNW), and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.
- Wetland B is PSS feature where 0.25 acres was delineated within the AOI and is potentially regulated water of the of the United States afforded protection under Section 404 of the Clean Water Act.
- Wetland C is a PEM feature where 0.31 acres was delineated within the AOI. This wetland is a closed depressional wetland with no direct connection to a TNW, and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.
- Wetland D is a PEM feature where 0.07 acres was delineated within the AOI. This wetland is a closed depressional wetland with no direct connection to a TNW, and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.
- Wetland E is a PSS feature where 0.009 acres was delineated within the AOI. This wetland is a closed depressional wetland with no direct connection to a TNW, and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.
- Wetland F is a PSS feature where 0.03 acres was delineated within the AOI. This wetland is a closed depressional wetland with no direct connection to a TNW, and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.
- Wetland G is a PEM feature where 0.06 acres was delineated within the AOI. This wetland is a closed depressional wetland with no direct connection to a TNW, and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.
- Wetland T is a PSS feature where 0.11 acres was delineated within the AOI. This wetland is a closed depressional wetland with no direct connection to a TNW, and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.
- Wetland U is a PEM feature where 0.11 acres was delineated within the AOI. This wetland is a closed depressional wetland with no direct connection to a TNW, and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.
- Wetland V is a PFO feature where 0.19 acres was delineated within the AOI. This wetland is a closed depressional wetland with no direct connection to a TNW, and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.
- Wetland W is a PFO feature where 0.19 acres was delineated within the AOI. This wetland is a closed depressional wetland with no direct connection to a TNW, and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.

- Wetland X is a PFO feature where 0.12 acres was delineated within the AOI. This wetland is a closed depressional wetland with no direct connection to a TNW, and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.
- Wetland Y is a PFO feature where 0.19 acres was delineated within the AOI. This wetland is a closed depressional wetland with no direct connection to a TNW, and therefore should not be considered jurisdictional under Section 404 of the Clean Water Act.
- Wetland Z is a PEM/PSS feature where 7.18 acres was delineated within the AOI is a potentially regulated water of the United States afforded protection under Section 404 of the Clean Water Act.

Wetlands A, C, D, E, F, G, T, U, V, W, X and Y are isolated wetlands with no jurisdictional connection to TNW waters and therefore are not potentially regulated water of the of the United States afforded protection under Section 404 of the Clean Water Act. Wetlands B and Z are potentially regulated waters of the of the United States afforded protection under Section 404 of the Clean Water Act. The wetlands described herein satisfy the criteria to be a wetland pursuant to the Army Corps of Engineers' 1987 Manual (and Regional Supplement) with subsequent clarification memoranda and pursuant to confirmation by the USACE.

Wetlands A, C, D, E, F, G, T, U, V, W, X, Y, and Z are not subject to not subject to jurisdiction by the NYSDEC under Article 24 of the Freshwater Wetlands Act. Wetland B would be subject to jurisdiction by the NYSDEC under the Article 24 of the Freshwater Wetlands Act. It is our opinion that Wetland B is a portion of NYSDEC Wetland MA-1.

No non-relatively open waterways (RPWs) or open waters were identified within the project limits.

One stream was identified within the AOI boundary, identified as Stream A. Stream A is an unnamed tributary of the Massena Power Canal, which is a Class D with D standards surface water that is encompassed by wetland Z and therefore is not considered a protected stream by New York State standards. Stream A is potentially regulated water of the United States afforded protection under Section 404 of the Clean Water Act.

The final boundary and jurisdictional status of on-site features is subject to approval by both the USACE and NYSDEC.

APPENDIX A USACE WETLAND DATA FORMS

Landform (hillside, terrace, etc.): none Local relief (concave, convex, nor Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.957310 Long: -74.3 Soil Map Unit Name: HnB - Hogansburg loam, 3 to 8 percent slopes	Lawrence Sampling Date: 10-6-2022 State: NY Sampling Point: W-A-1 ip, Range: 4.004-1-19 & 4.004-1-18 Kampling Point: Kampling Point:
Investigator(s): J. Strong Section, Townshi Landform (hillside, terrace, etc.): none Local relief (concave, convex, nor Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.957310 Long: -74.9 Soil Map Unit Name: HnB - Hogansburg loam, 3 to 8 percent slopes -74.9	
Landform (hillside, terrace, etc.): none Local relief (concave, convex, nor Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.957310 Long: -74.3 Soil Map Unit Name: HnB - Hogansburg loam, 3 to 8 percent slopes	ip, Range: 4.004-1-19 &4.004-1-18
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.957310 Long: -74.9 Soil Map Unit Name: HnB - Hogansburg loam, 3 to 8 percent slopes Long: -74.9	
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.957310 Long: -74.9 Soil Map Unit Name: HnB - Hogansburg loam, 3 to 8 percent slopes Long: -74.9	ne): concave Slope %: 0-3
Soil Map Unit Name: HnB - Hogansburg loam, 3 to 8 percent slopes	
	NWI classification:
Are climatic / hydrologic conditions on the site typical for this time of year? Yes	No (If no, explain in Remarks.)
	ircumstances" present? Yes No
	plain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling point locations	s, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area within a Wetland? Hydric Soil Present? Yes X No within a Wetland? Wetland Hydrology Present? Yes X No If yes, optional Wetland Remarks: (Explain alternative procedures here or in a separate report.) If yes, optional Wetland If yes, optional Wetland	Yes X No Site ID: Wetland A
HYDROLOGY	
	ondary Indicators (minimum of two required)
	Surface Soil Cracks (B6)
	Drainage Patterns (B10) Moss Trim Lines (B16)
	Dry-Season Water Table (C2)
	Crayfish Burrows (C8)
Sediment Deposits (B2) X Oxidized Rhizospheres on Living Roots (C3) X	Saturation Visible on Aerial Imagery (C9)
	Stunted or Stressed Plants (D1)
	Geomorphic Position (D2)
	Shallow Aquitard (D3)
	Microtopographic Relief (D4) FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes No X Depth (inches):	
Saturation Present? Yes No X Depth (inches): Wetland Hyd	drology Present? Yes X No
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if availa	able:
Remarks:	

VEGETATION – Use scientific names of plants.

Sampling Point: W-A-1

Tree Stratum (Plot size: 30x30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
Fraxinus pennsylvanica	10	Yes	FACW	Number of Dominant Species That Are OBL, FACW, or FAC: 6 (A)
°				
4		·		Total Number of Dominant Species Across All Strata: 7 (B)
5		·		Percent of Dominant Species That Are OBL, FACW, or FAC: 85.7% (A/E
7.				Prevalence Index worksheet:
	10	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15x15)		-		OBL species 15 x 1 = 15
1. Cornus racemosa	25	Yes	FAC	FACW species 85 x 2 = 170
2. Rhamnus cathartica	10	Yes	FAC	FAC species 35 x 3 = 105
3. Salix bebbiana	10	Yes	FACW	FACU species 25 x 4 = 100
4.				UPL species 0 x 5 = 0
5.				Column Totals: 160 (A) 390 (E
6.		·		Prevalence Index = $B/A = 2.44$
7.				Hydrophytic Vegetation Indicators:
	45	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5x5)		-		X 2 - Dominance Test is >50%
1. Phalaris arundinacea	35	Yes	FACW	X 3 - Prevalence Index is $\leq 3.0^1$
2. Solidago canadensis	15	No	FACU	4 - Morphological Adaptations ¹ (Provide supporti
3. Solidago gigantea	30	Yes	FACW	data in Remarks or on a separate sheet)
4. Lythrum salicaria	15	No	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
5 6.		·		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8 9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height
10				Sapling/shrub – Woody plants less than 3 in. DBH
11		·		and greater than or equal to 3.28 ft (1 m) tall.
12	95	=Total Cover		Herb – All herbaceous (non-woody) plants, regardles of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 5x5)				Woody vines – All woody vines greater than 3.28 ft
1. Vitis labrusca	10	Yes	FACU	height.
2.				Hadron had a
		<u></u>		Hydrophytic Vegetation
3.				-
3				Present? Yes X No

Depth	Matrix			x Featur	es		onfirm the absence o	·
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6	10YR 3/1	100					Loamy/Clayey	
6-18	10YR 3/1	95	5YR 3/4	5	С	PL/M	Loamy/Clayey	Prominent redox concentrations
0-10	101R 3/1	95	51R 3/4	5	<u> </u>	PL/IVI	Loamy/Clayey	Prominent redox concentrations
		<u> </u>						
	ncentration, D=Dep	etion, RM=	Reduced Matrix, N	/IS=Masl	ked Sand	Grains.		PL=Pore Lining, M=Matrix.
Hydric Soil I								or Problematic Hydric Soils ³ :
Histosol		-	Dark Surface (uck (A10) (LRR K, L, MLRA 149B)
	ipedon (A2)	-	Polyvalue Belo		ce (S8) (LRR R,		Prairie Redox (A16) (LRR K, L, R)
Black His	. ,		MLRA 149B					ucky Peat or Peat (S3) (LRR K, L, R)
	n Sulfide (A4) Layers (A5)	-	Thin Dark Sur High Chroma S				· _ ·	ue Below Surface (S8) (LRR K, L) rk Surface (S9) (LRR K, L)
	Below Dark Surface	- (A11)	Loamy Mucky	-				nganese Masses (F12) (LRR K, L, R)
	rk Surface (A12)		Loamy Gleyed			(I, L)		nt Floodplain Soils (F19) (MLRA 1498
	odic (A17)	-	Depleted Matr		_/			rent Material (F21) (outside MLRA 1 4
	A 144A, 145, 149B)	_	X Redox Dark S		6)			nallow Dark Surface (F22)
Sandy M	ucky Mineral (S1)	_	Depleted Dark	Surface	(F7)		Other (E	Explain in Remarks)
Sandy G	leyed Matrix (S4)	_	Redox Depres	sions (F8	3)			
	edox (S5)	_	Marl (F10) (LR	RR K, L)			³ Indicate	ors of hydrophytic vegetation and
Stripped	Matrix (S6)	_	Red Parent Ma	aterial (F	21) (MLF	RA 145)		nd hydrology must be present,
							unles	s disturbed or problematic.
	ayer (if observed):							
Type:	ches):						Hydric Soil Prese	
	choc).							nt? Yes X No

ence Sampling Date: 10-6-2022 tate: NY Sampling Point: UP-A-1 nge: 4.004-1-19 & 4.004-1-18
nge: 4.004-1-19 &4.004-1-18 onvex Slope %: 3-8 7 Datum: NAD 1983 classification: (If no, explain in Remarks.) stances" present? Yes No ny answers in Remarks.) ansects, important features, etc. Yes No X
onvex Slope %: 3-8 7 Datum: NAD 1983 classification:
7 Datum: NAD 1983 classification:
7 Datum: NAD 1983 classification:
Classification: (If no, explain in Remarks.) stances" present? Yes No ny answers in Remarks.) Insects, important features, etc. Yes No _X
(If no, explain in Remarks.) stances" present? Yes No ny answers in Remarks.) ansects, important features, etc. Yes No X
stances" present? Yes No ny answers in Remarks.) Insects, important features, etc. Yes No _X
ny answers in Remarks.) Insects, important features, etc. Yes No_X_
The sector important features, etc. Yes No X
Yes No_X
y Indicators (minimum of two required)
ce Soil Cracks (B6) age Patterns (B10)
Trim Lines (B16)
eason Water Table (C2)
sh Burrows (C8)
ation Visible on Aerial Imagery (C9)
ed or Stressed Plants (D1)
orphic Position (D2) ow Aquitard (D3)
topographic Relief (D4)
Neutral Test (D5)
gy Present? Yes <u>No X</u>
m Ic -1

VEGETATION – Use scientific names of plants.

Sampling Point: UP-A-1

		B : 1	1 12 4			
Tree Stratum (Plot size: 30x30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:		
1 2				Number of Dominant Species That Are OBL, FACW, or FAC:	2	(A)
3 4				Total Number of Dominant Species Across All Strata:	7	_(B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC:	28.6%	(A/B
7.				Prevalence Index worksheet:		_
		=Total Cover		Total % Cover of:	Multiply by:	
Sapling/Shrub Stratum (Plot size: 15x15)			OBL species 0 x 1 =		
1. Rhamnus cathartica	_, 10	Yes	FAC	FACW species 0 x 2 =		
2. Cornus racemosa	10	Yes	FAC	FAC species 20 x 3 =	1	
3.		100		FACU species 75 x 4 =	-	
<u> </u>				UPL species 45×5	-	
				·	585	
				Column Totals: 140 (A) Prevalence Index = B/A =	4.18	(B
6						
7				Hydrophytic Vegetation Indicator		
	20	=Total Cover		1 - Rapid Test for Hydrophytic	Vegetation	
Herb Stratum (Plot size: 5x5)				2 - Dominance Test is >50%		
1. Daucus carota	15	Yes	UPL	3 - Prevalence Index is ≤3.0 ¹		
2. Solidago canadensis	30	Yes	FACU	4 - Morphological Adaptations ¹	• •	•
3. <u>Vicia americana</u>	15	Yes	FACU	data in Remarks or on a sep		
4. Solidago altissima	15	Yes	FACU	Problematic Hydrophytic Veget	ation ¹ (Expla	ain)
5. Galium aparine	10	No	FACU	¹ Indicators of hydric soil and wetlan	d hydrology	must
6. Taraxacum officinale	5	No	FACU	be present, unless disturbed or prot		
7. Hieracium pratense	5	No	UPL	Definitions of Vegetation Strata:		
8. <u>Pastinaca sativa</u>	10	No	UPL	Tree – Woody plants 3 in. (7.6 cm)	or more in	
9. Eurybia divaricata	15	Yes	UPL	diameter at breast height (DBH), re		neight
10				Sapling/shrub – Woody plants less and greater than or equal to 3.28 ft		OBH
12.				Herb – All herbaceous (non-woody)		ardles
	120	=Total Cover		of size, and woody plants less than	3.28 ft tall.	
<u>Woody Vine Stratum</u> (Plot size: <u>5x5</u> 1	_)			Woody vines – All woody vines gre height.	eater than 3.	28 ft i
2						
3.				Hydrophytic Vegetation		
				-	lo X	
4.						
4.		=Total Cover				

	cription: (Describe	to the de				ator or co	onfirm the absence	of indicat	tors.)	
Depth (inchos)	Matrix	%		x Featu %		Loc ²	Taster		D	140
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc	Texture	·	Rema	Irks
0-18	10YR 3/2	100					Loamy/Clayey			
———					·			·		
					·					
					·			·		
					·					
					·					
					·			·		
	oncentration, D=Depl	etion, RM	=Reduced Matrix, N	/IS=Mas	ked Sand	l Grains.			Lining, M=Ma	
Hydric Soil	Indicators:						Indicators	for Probl	ematic Hydr	ic Soils ³ :
Histosol	(A1)		Dark Surface (S7)			2 cm l	Muck (A10)) (LRR K, L,	MLRA 149B)
Histic Ep	oipedon (A2)		Polyvalue Belo	w Surfa	ace (S8) (LRR R,	Coast	Prairie Re	dox (A16) (L	RR K, L, R)
Black Hi	stic (A3)		MLRA 149B)			5 cm l	Mucky Pea	it or Peat (S3	6) (LRR K, L, R)
Hydroge	en Sulfide (A4)		Thin Dark Surf	ace (S9) (LRR R	, MLRA ′	149B) Polyva	alue Below	Surface (S8) (LRR K, L)
Stratified	d Layers (A5)		High Chroma S	Sands (S	311) (LRF	R K, L)	Thin D	ark Surfac	æ (S9) (LRR	K , L)
Depleted	d Below Dark Surface	e (A11)	Loamy Mucky	Mineral	(F1) (LR	R K, L)	Iron-M	anganese	Masses (F12	2) (LRR K, L, R)
Thick Da	ark Surface (A12)		Loamy Gleyed	Matrix ((F2)		Piedm	ont Floodp	olain Soils (F	19) (MLRA 149B)
Mesic S	podic (A17)		Depleted Matri	x (F3)			Red P	arent Mate	erial (F21) (o	utside MLRA 145
(MLR	A 144A, 145, 149B)		Redox Dark Su	urface (F	-6)		Very S	Shallow Da	rk Surface (F	22)
Sandy M	lucky Mineral (S1)		Depleted Dark	Surface	e (F7)		Other	(Explain in	Remarks)	
Sandy G	Gleyed Matrix (S4)		Redox Depres	sions (F	8)					
Sandy R	Redox (S5)		Marl (F10) (LR	R K, L)			³ Indica	ators of hyd	drophytic veg	etation and
Stripped	Matrix (S6)		Red Parent Ma	aterial (F	21) (MLF	RA 145)	wetland hydrology must be present,			
							unle	ess disturbe	ed or problen	natic.
Restrictive I	Layer (if observed):									
Type:										
Depth (ir	nches):						Hydric Soil Pres	ent?	Yes	<u>No X</u>
Remarks:	, <u> </u>									
Remarks:										

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Masser	na Green Hyd	rogen Facility	City/County: Massena/St. Lawrence Sampling Date: 10-5-2						10-5-2022
Applicant/Owner:	Air Products					St	ate: NY	Sampling Poir	nt: B-W
Investigator(s): BAB			Section, Township, Range:						
Landform (hillside, ten	race, etc.):	Depression	Local relief (concave, convex, none): Concave Slope %: 0					e %: 0-2	
Subregion (LRR or ML	_RA): <u>LRR [</u>	R, MLRA 142	Lat:	44.959659	Long	-74.905632	2	Datum:	WGS 84
Soil Map Unit Name:	MaB - Malor	ie loam				NWI cl	lassification	: <u>N/A</u>	
Are climatic / hydrologic conditions on the site typical for this time of year? Yes X No (If no, explain in Remarks.)									
Are Vegetation	, Soil	, or Hydrology		significantly distur	bed? Are "Nor	mal Circums	tances" pres	sent? Yes <u>X</u>	No
Are Vegetation	, Soil	, or Hydrology	naturally problematic? (If needed, explain any answers in Remarks.)						
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.									
Hydrophytic Vegetati	on Present?	Yes	х	No	Is the Sampled A	rea			
Hydric Soil Present?		Yes	Х	X No within a Wetland? Yes X No					
Wetland Hydrology F	'resent?	Yes	Х	X No If yes, optional Wetland Site ID:					
Remarks: (Explain alternative procedures here or in a separate report.)									

HYDROLOGY

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two requ	ired)	
Primary Indicators (minimum of one is require	Surface Soil Cracks (B6)				
Surface Water (A1)	Water-Stained Leaves (B9)		X Drainage Patterns (B10)		
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)		
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)		
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)		
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	oots (C3)	Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	s (C6)	Geomorphic Position (D2)		
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)		
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)		Microtopographic Relief (D4)		
Sparsely Vegetated Concave Surface (B8	3)		X FAC-Neutral Test (D5)		
Field Observations:					
Surface Water Present? Yes	No X Depth (inches):				
Water Table Present? Yes	No X Depth (inches):				
	NO A Deptil (inches).				
Saturation Present? Yes	No X Depth (inches):	Wetlan	d Hydrology Present? Yes X N	o	
		Wetlan	d Hydrology Present? Yes X N	o	
Saturation Present? Yes	No X Depth (inches):			o	
Saturation Present? Yes (includes capillary fringe)	No X Depth (inches):			o	
Saturation Present? Yes (includes capillary fringe)	No X Depth (inches):			o	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mon	No X Depth (inches):			o	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mon	No X Depth (inches):			o	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mon	No X Depth (inches):			o	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mon	No X Depth (inches):			0	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mon	No X Depth (inches):			o	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mon	No X Depth (inches):			o	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mon	No X Depth (inches):			o	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mon	No X Depth (inches):			o	

VEGETATION – Use scientific names of plants.

Sampling Point: B-W

Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:3(A)
3 4				Total Number of Dominant Species Across All Strata: <u>3</u> (B)
5 6				Percent of Dominant Species That Are OBL, FACW, or FAC:100.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)				OBL species 20 x 1 = 20
1. Viburnum lentago	40	Yes	FAC	FACW species 30 x 2 = 60
2.				FAC species 40 x 3 = 120
3.				FACU species 0 x 4 = 0
4.				UPL species 0 x 5 = 0
5.				Column Totals: 90 (A) 200 (B)
6				Prevalence Index = B/A = 2.22
7.				Hydrophytic Vegetation Indicators:
	40	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
<u>Herb Stratum</u> (Plot size: 5)				X 2 - Dominance Test is >50%
1. Carex lupulina	20	Yes	OBL	X 3 - Prevalence Index is ≤3.0 ¹
2. Onoclea sensibilis	30	Yes	FACW	4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				
6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8 9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12	50	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
<u>Woody Vine Stratum</u> (Plot size:)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				Hydrophytic
3		·		Vegetation
4				Present? Yes <u>X</u> No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			

		to the dep				ator or c	onfirm the absence o	of indicators.)
Depth (inches)	Matrix	%	Color (moist)	x Featur %		12	Tauduma	Demente
(inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-8	10YR 2/1	100					Loamy/Clayey	
8-18	5Y 4/2	90	10YR 2/1	5	С	М	Loamy/Clayey	Prominent redox concentrations
			10YR 5/6	5	С	М		Prominent redox concentrations
		<u> </u>						
		<u> </u>						
		<u> </u>						
		·						
		<u> </u>						
	ncentration, D=Depl	etion, RM	=Reduced Matrix, N	/IS=Masl	ked Sand	l Grains.		PL=Pore Lining, M=Matrix.
Hydric Soil Ir			Dobasoluo Bolo		aa (CO) (or Problematic Hydric Soils ³ :
Histosol (ipedon (A2)		Polyvalue Belo MLRA 149B		ce (58) (LKK K,		uck (A10) (LRR K, L, MLRA 149B) rairie Redox (A16) (LRR K, L, R)
Black His			Thin Dark Surf	,) (LRR R	. MLRA		ucky Peat or Peat (S3) (LRR K, L, R)
	n Sulfide (A4)		High Chroma S					ue Below Surface (S8) (LRR K, L)
	Layers (A5)		Loamy Mucky					rk Surface (S9) (LRR K, L)
X Depleted	Below Dark Surface	e (A11)	Loamy Gleyed	Matrix (F2)		Iron-Ma	nganese Masses (F12) (LRR K, L, R)
Thick Dar	rk Surface (A12)		X Depleted Matri	x (F3)			Piedmo	nt Floodplain Soils (F19) (MLRA 149B)
	ucky Mineral (S1)		Redox Dark Su					podic (TA6) (MLRA 144A, 145, 149B)
	eyed Matrix (S4)		Depleted Dark		• •			rent Material (F21)
Sandy Redox (S5) X Redox Depressions (F8)							allow Dark Surface (F22)	
	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (E	Explain in Remarks)
Dark Surf	face (S7)							
³ Indicators of	hydrophytic vegetat	ion and we	etland hydrology mi	ist he nr	esent ur	nless dist	urbed or problematic.	
	ayer (if observed):		stand nyarology me					
Туре:								
Depth (ind	ches):						Hydric Soil Prese	nt? Yes <u>X</u> No
Remarks:							•	
	n is revised from No 2015 Errata. (http://w							CS Field Indicators of Hydric Soils,
	.015 Ellata. (III.p.//w	ww.mcs.u	isua.gov/internet/F	SE_DOC		3/11/05/14	2p2_051295.00cx)	

Project/Site: Masser	na Green I	Hydrogen Facility		City/Co	ounty: <u>Massena/</u>	St. Lawrence		Sampling Date:	10-5-2022
Applicant/Owner:	Air Produ	ucts				State:	NY	Sampling Point:	B-U
Investigator(s): BAB					Section, Towns	ship, Range:			
Landform (hillside, terr	race, etc.)	Terrace		Local relief (co	oncave, convex, i	none): None		Slope	%: 3-5
Subregion (LRR or ML	.RA): <u>LF</u>	RR R, MLRA 142	Lat: 44.959	9661	Long: -7	4.905807		Datum:	WGS 84
Soil Map Unit Name:	MaB - M	lalone loam				NWI classifi	cation:	N/A	
Are climatic / hydrolog	ic conditio	ons on the site typica	al for this tim	e of year?	Yes X	No	(lf no, e	explain in Remarks	.)
Are Vegetation	, Soil	, or Hydrology	signific	cantly disturbed?	Are "Normal	Circumstance	s" pres	ent? Yes X	No
Are Vegetation	, Soil	, or Hydrology	natura	Ily problematic?	(If needed, e	explain any ans	wers ir	n Remarks.)	
SUMMARY OF F	INDING	S – Attach site	map shov	ving sampling	point locatio	ns, transec	ts, im	portant featur	es, etc.

Hydrophytic Vegetation Present?	Yes <u>X</u>	No	Is the Sampled Area within a Wetland? Yes No X If yes, optional Wetland Site ID:
Hydric Soil Present?	Yes	No X	
Wetland Hydrology Present?	Yes	No X	
Remarks: (Explain alternative procedures	here or in a s	eparate report.)	

welland hydrology mulcators.	Wetland Hydrology Indicators:				
Primary Indicators (minimum of one is requi		Surface Soil Cracks (B6)			
Surface Water (A1)	Water-Stained Leaves (B9)		Drainage Patterns (B10)		
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)		
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)		
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)		
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	oots (C3)	Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	s (C6)	Geomorphic Position (D2)		
Iron Deposits (B5)	Thin Muck Surface (C7)	•	Shallow Aquitard (D3)		
Inundation Visible on Aerial Imagery (B	7) Other (Explain in Remarks)	•	Microtopographic Relief (D4)		
Sparsely Vegetated Concave Surface (B8)		FAC-Neutral Test (D5)		
Field Observations:					
Surface Water Present? Yes	No X Depth (inches):				
Water Table Present? Yes	No X Depth (inches):				
Saturation Present? Yes			d Hydrology Present? Yes No X		
(includes capillary fringe)	<u> </u>				
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe		vailable:		
· · · · · ·	onitoring well, aerial photos, previous inspe		vailable:		
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe		vailable:		
· · · · · ·	onitoring well, aerial photos, previous inspe		vailable:		
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe		vailable:		
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe		vailable:		
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe		vailable:		
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe		vailable:		
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe		vailable:		
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe		vailable:		
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe		vailable:		
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe		vailable:		

Sampling Point: B-U

<u>Tree Stratum</u> (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. prunus serotina	30	Yes	FACU	Number of Deminerat Creation
2. acer rubrum	30	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 4 (A)
3.				Total Number of Dominant
4.				Species Across All Strata: 6 (B)
5.				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC:66.7% (A/B)
7.				Prevalence Index worksheet:
	60	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)				OBL species 0 x 1 = 0
1. cornus racemosa	40	Yes	FAC	FACW species 10 x 2 = 20
2. robinia pseudoacacia	5	No	FACU	FAC species 80 x 3 = 240
3				FACU species45x 4 =180
4				UPL species 0 x 5 = 0
5				Column Totals: 135 (A) 440 (B)
6				Prevalence Index = B/A = 3.26
7				Hydrophytic Vegetation Indicators:
	45	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)				X 2 - Dominance Test is >50%
1. geum canadense	10	Yes	FAC	3 - Prevalence Index is ≤3.0 ¹
2. dryopteris marginalis	10	Yes	FACU	4 - Morphological Adaptations ¹ (Provide supporting
3. onoclea sensibilis	10	Yes	FACW	data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	30	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size:)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				
3.				Hydrophytic Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

Profile Desc	ription: (Describe	to the dep	oth needed to docu	ument t	he indica	ator or co	onfirm the absence of	indicators.)	
Depth	Matrix		Redo	x Featu	res				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remark	S
0-14	10YR 3/2	100					Loamy/Clayey		
14-16	10YR 4/3	100					Loamy/Clayey		
		100							
					·				
		·							
					·				
		·			· <u> </u>				
		·			·				
		·							
	oncentration, D=Dep	letion, RM	=Reduced Matrix, M	IS=Mas	ked Sand	l Grains.		_=Pore Lining, M=Matr	
Hydric Soil			Debaselus Deb	0.6				r Problematic Hydric	
Histosol	(A1) bipedon (A2)		Polyvalue Belo MLRA 149B		ace (S8) (LRR R,		ck (A10) (LRR K, L, M airie Redox (A16) (LR I	,
	stic (A3)		Thin Dark Surf	,				cky Peat or Peat (S3)	-
	n Sulfide (A4)		High Chroma S	-				e Below Surface (S8) (
	Layers (A5)		Loamy Mucky					k Surface (S9) (LRR K	
Depleted	Below Dark Surface	e (A11)	Loamy Gleyed				Iron-Mang	ganese Masses (F12)	(LRR K, L, R)
Thick Da	ark Surface (A12)		Depleted Matri	x (F3)			Piedmont	t Floodplain Soils (F19	9) (MLRA 149B)
	lucky Mineral (S1)		Redox Dark Su	`	,			odic (TA6) (MLRA 14	4A, 145, 149B)
	leyed Matrix (S4)		Depleted Dark		· · /			ent Material (F21)	
	edox (S5)		Redox Depress					llow Dark Surface (F2:	2)
	Matrix (S6) rface (S7)		Marl (F10) (LR	R N, L)				vplain in Remarks)	
³ Indicators of	f hydrophytic vegetat	tion and w	etland hydrology mι	ust be pi	resent, ur	nless dist	urbed or problematic.		
	Layer (if observed):								
Туре:									
Depth (ir	nches):						Hydric Soil Present	t? Yes	No <u>X</u>
Remarks:									

Project/Site: Massena Green Hydrogen Facility	City/County: Massena/St. Lawrence Sampling Date: 10-5-2022
Applicant/Owner: Air Products	State: NY Sampling Point: C-W
Investigator(s): BAB	Section, Township, Range:
Landform (hillside, terrace, etc.): Depression	Local relief (concave, convex, none): Concave Slope %: 0-2
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.5	260826 Long: -74.906339 Datum: WGS 84
Soil Map Unit Name: Rt - Runeberg soils	NWI classification: N/A
Are climatic / hydrologic conditions on the site typical for this t	time of year? Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysign	ificantly disturbed? Are "Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydrology natu	urally problematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map sh	owing sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No	o Is the Sampled Area
Hydric Soil Present? Yes X No	• within a Wetland? Yes X No
Wetland Hydrology Present? Yes X No	o If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separ	ate report.)

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)	
Primary Indicators (minimum of one is require	Surface Soil Cracks (B6)		
Surface Water (A1)	Water-Stained Leaves (B9)	Drainage Patterns (B10)	
X High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)
X Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	oots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	s (C6)	Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)
X Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)		Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B	8)		X FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes	No X Depth (inches):		
Water Table Present? Yes X No Depth (inches): 10			
Saturation Present? Yes X	No Depth (inches): 8	Wetland	d Hydrology Present? Yes X No
		Wetland	d Hydrology Present? Yes X No
Saturation Present? Yes X	No Depth (inches): 8		· · · ·
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 8		· · · ·
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 8		· · · ·
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 8		· · · ·
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 8		· · · ·
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 8		· · · ·
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 8		· · · ·
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 8		· · · ·
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 8		· · · ·
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 8		· · · ·
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 8		· · · ·
Saturation Present? Yes X (includes capillary fringe)	No Depth (inches): 8		· · · ·

Sampling Point: C-W

<u>Tree Stratum</u> (Plot size: <u>30</u>)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:5(A)
3 4				Total Number of Dominant Species Across All Strata: <u>5</u> (B)
5 6				Percent of Dominant Species That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)				OBL species 60 x 1 = 60
1. Cornus amomum	10	Yes	FACW	FACW species 60 x 2 = 120
2. Salix bebbiana	10	Yes	FACW	FAC species 0 x 3 = 0
3				FACU species 0 x 4 = 0
4				UPL species x 5 =
5				Column Totals: 120 (A) 180 (B)
6.				Prevalence Index = B/A = 1.50
7.				Hydrophytic Vegetation Indicators:
	20	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)				X 2 - Dominance Test is >50%
1. Acorus calamus	30	Yes	OBL	X 3 - Prevalence Index is ≤3.0 ¹
2. Typha latifolia	30	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3. Bidens frondosa	25	Yes	FACW	data in Remarks or on a separate sheet)
4. Phalaris arundinacea	15	No	FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
5.				
6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				Tree – Woody p l ants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12	100	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size:)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Hydrophytic
3				Hydrophytic Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

Profile Desc	ription: (Describe	to the de	pth needed to docu	ument tl	he indica	ator or c	onfirm the absence o	f indicators.)		
Depth	Matrix		Redox	x Featur	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-6	10YR 2/1	100					Mucky Loam/Clay			
6-18	10YR 4/2	95	10YR 5/6	5	С	M	Loamy/Clayey	Prominent redox concentrations		
		. <u> </u>								
		. <u></u> ,								
							·			
							·			
							·			
¹ Type: C=Co	oncentration, D=Depl	etion, RN	I=Reduced Matrix, N	IS=Masl	ked Sand	Grains.	² Location: P	L=Pore Lining, M=Matrix.		
Hydric Soil I	ndicators:							or Problematic Hydric Soils ³ :		
Histosol	(A1)		Polyvalue Belo	w Surfa	ce (S8) (LRR R,	2 cm Mu	uck (A10) (LRR K, L, MLRA 149B)		
Histic Ep	ipedon (A2)		MLRA 149B	,				rairie Redox (A16) (LRR K, L, R)		
Black Hi			Thin Dark Surfa		-		149B) 5 cm Mu	ucky Peat or Peat (S3) (LRR K, L, R)		
Hydroge	n Sulfide (A4)		High Chroma Sands (S11) (LRR K, L)				Polyvalu	ie Below Surface (S8) (LRR K, L)		
	Layers (A5)		Loamy Mucky I			R K, L)		rk Surface (S9) (LRR K, L)		
	Below Dark Surface	e (A11)	Loamy Gleyed		F2)			nganese Masses (F12) (LRR K, L, R)		
	rk Surface (A12)		X Depleted Matrix					nt Floodplain Soils (F19) (MLRA 149B)		
	ucky Mineral (S1)		Redox Dark Su	•	'			podic (TA6) (MLRA 144A, 145, 149B)		
	leyed Matrix (S4)		Depleted Dark Surface (F7) X Redox Depressions (F8)				Red Parent Material (F21) Very Shallow Dark Surface (F22)			
	edox (S5)									
	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (E	xplain in Remarks)		
Dark Sur	face (S7)									
³ Indicators of	hydrophytic vegetat	on and v	vetland hydrology mu	ıst be pr	esent, ur	iless dist	turbed or problematic.			
Restrictive L	ayer (if observed):									
Туре:										
Depth (ir	iches):						Hydric Soil Preser	nt? Yes <u>X</u> No		
Remarks:										
								CS Field Indicators of Hydric Soils,		
version 7.0, 2	2015 Errata. (http://w	ww.nrcs.	usda.gov/Internet/FS	SE_DOC	UMENT	5/nrcs14	2p2_051293.docx)			

Project/Site: Masser	a Green Hydrogen Facility	City/Co	unty: Massena/St. Lawrence	Sampling Date: 10-5-2022
Applicant/Owner:	Air Products		State:	NY Sampling Point: C/E-U
Investigator(s): BAB			Section, Township, Range:	
Landform (hillside, terr	ace, etc.): Terrace	Local relief (co	ncave, convex, none): <u>None</u>	Slope %: 3-5
Subregion (LRR or ML	.RA): LRR R, MLRA 142 La	at: 44.963062	Long: <u>-74.906199</u>	Datum: WGS 84
Soil Map Unit Name:	MaB - Malone loam		NWI classific	cation: N/A
Are climatic / hydrolog	ic conditions on the site typical	for this time of year?	Yes X No	(If no, explain in Remarks.)
Are Vegetation	, Soil, or Hydrology	significantly disturbed?	Are "Normal Circumstances	s" present? Yes X No
Are Vegetation	, Soil, or Hydrology	naturally problematic?	(If needed, explain any ans	wers in Remarks.)
SUMMARY OF F	NDINGS – Attach site m	ap showing sampling r	point locations, transec	ts, important features, etc.

Hydrophytic Vegetation Present?	Yes <u>X</u>	No	Is the Sampled Area within a Wetland? Yes NoX If yes, optional Wetland Site ID:
Hydric Soil Present?	Yes	No _ X	
Wetland Hydrology Present?	Yes	No _ X	
Remarks: (Explain alternative procedures h	ere or in a se		

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)	
Primary Indicators (minimum of one is requir		Surface Soil Cracks (B6)		
Surface Water (A1)	Water-Stained Leaves (B9)		Drainage Patterns (B10)	
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)	
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)	
Water Marks (B1) Hydrogen Sulfide Odor (C1)			Crayfish Burrows (C8)	
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	oots (C3)	Saturation Visible on Aerial Imagery (C9)	
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)	
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soil	s (C6)	Geomorphic Position (D2)	
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)	
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)		Microtopographic Relief (D4)	
Sparsely Vegetated Concave Surface (E	38)		FAC-Neutral Test (D5)	
Field Observations:				
Surface Water Present? Yes	No X Depth (inches):			
Water Table Present? Yes	No X Depth (inches):			
Saturation Present? Yes	No X Depth (inches):	Wetlan	d Hydrology Present? Yes No X	
(includes capillary fringe)	· · · · /			
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos, previous inspe	ctions), if a	available:	
Remarks:				

Sampling Point: C/E-U

<u>Tree Stratum</u> (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Acer rubrum	25	Yes	FAC	Dominance rest worksheet.
2. Ulmus americana	10	No	FACW	Number of Dominant Species That Are OBL, FACW, or FAC: 4 (A)
3. Betula papyrifera	25	Yes	FACU	
4.	23	165	FACO	Total Number of Dominant Species Across All Strata: 6 (B)
				Species Across All Strata: <u>6</u> (B)
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 66.7% (A/B)
7.				Prevalence Index worksheet:
	60	=Total Cover		Total % Cover of: Multiply by:
<u>Sapling/Shrub Stratum</u> (Plot size: 15)	0			$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1. viburnum lentago	2	No	FAC	FACW species $37 \times 2 = 74$
2. Rhamnus cathartica	15	Yes	FAC	FAC species 92 $\times 3 = 276$
3. Lonicera morrowii	10	Yes	FACU	FACU species $35 \times 4 = 140$
4.				UPL species $0 \times 5 = 0$
				Column Totals: 164 (A) 490 (B)
				Prevalence Index = $B/A = 2.99$
7				Hydrophytic Vegetation Indicators:
1		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
<u>Herb Stratum</u> (Plot size: 5)	27			
· · · · · · · · · · · · · · · · · · ·	25	Vee		X 2 - Dominance Test is >50% 3 - Prevalence Index is $\leq 3.0^{1}$
Solidago gigantea rhamnus cathartica		Yes	FACW	4 - Morphological Adaptations ¹ (Provide supporting
	<u>50</u> 2	Yes	FAC	data in Remarks or on a separate sheet)
3. <u>onoclea sensibilis</u>	Z	No	FACW	
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	77	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size:)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				Hydrophytic
3.				Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

Profile Des	cription: (Describe	to the de	oth needed to docu	ument t	he indica	tor or co	onfirm the absence of inc	licators.)
Depth	Matrix		Redox	x Featu	res			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-10	10YR 3/2	100					Loamy/Clayey	
10-16	10YR 4/3	100					Loamy/Clayey	
		·						
							······	
		·						
		·						
		·						
¹ Type: C=C	oncentration, D=Dep	letion RM	=Reduced Matrix_M	IS=Mas	ked Sand	Grains	² l ocation: PI =P	ore Lining, M=Matrix.
Hydric Soil				10-11103		Oranis.		roblematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Belo	w Surfa	ice (S8) (I	.RR R,		A10) (LRR K, L, MLRA 149B)
Histic E	pipedon (A2)		MLRA 149B)			Coast Prairie	e Redox (A16) (LRR K, L, R)
Black H	istic (A3)		Thin Dark Surfa	ace (S9) (LRR R,	MLRA [·]	149B) 5 cm Mucky	Peat or Peat (S3) (LRR K, L, R)
Hydroge	en Sulfide (A4)		High Chroma S					low Surface (S8) (LRR K, L)
	d Layers (A5)		Loamy Mucky I	-				Irface (S9) (LRR K, L)
	d Below Dark Surfac	e (A11)	Loamy Gleyed			, _,		ese Masses (F12) (LRR K, L, R)
	ark Surface (A12)	• ()	Depleted Matrix		/			oodplain Soils (F19) (MLRA 149B)
	/ucky Mineral (S1)		Redox Dark Su		-6)			c (TA6) (MLRA 144A, 145, 149B)
				`	'			
	Gleyed Matrix (S4)		Depleted Dark					Naterial (F21)
	Redox (S5)		Redox Depress		8)			Dark Surface (F22)
	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (Expla	in in Remarks)
Dark Su	ırface (S7)							
³ Indicators o	f hvdrophvtic vegetat	tion and w	etland hvdrologv mu	ist be pr	resent. un	less dist	urbed or problematic.	
	Layer (if observed):		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,			
Type:								
Depth (ii	nches):						Hydric Soil Present?	Yes No X
Remarks:								
								ield Indicators of Hydric Soils,
Version 7.0,	2015 Errata. (http://	www.nrcs.	usda.gov/Internet/FS	SE_DOO	CUMENT	S/nrcs14	2p2_051293.docx)	
1								

Project/Site: Masser	na Green Hyo	drogen Facility			City/Co	unty: <u>Massen</u>	a/St. Lawrence	e	Sampling Date:	10-5-2022
Applicant/Owner:	Air Products	S					State	: NY	Sampling Point	D-W
Investigator(s): BAB						Section, Tov	vnship, Range	:		
Landform (hillside, terr	race, etc.):	Depression			Local relief (co	ncave, conve	x, none): Conc	ave	Slope	%: 0-2
Subregion (LRR or ML	_RA): <u>LRR</u>	R, MLRA 142	Lat:	44.961987		Long:	-74.907017		Datum:	WGS 84
Soil Map Unit Name:	HnB - Hoga	insburg Loam					NWI class	sification:	N/A	
Are climatic / hydrolog	jic conditions	on the site typica	al for	this time of y	/ear?	Yes X	No	(If no,	explain in Remarks	.)
Are Vegetation	, Soil	, or Hydrology		significantly	disturbed?	Are "Norm	al Circumstan	ces" pres	ent? Yes <u>X</u>	No
Are Vegetation	, Soil	, or Hydrology		naturally pro	oblematic?	(If needed	l, explain any a	answers ir	n Remarks.)	
SUMMARY OF F		- Attach site	map	showing	sampling p	oint locat	ions, trans	ects, im	portant featur	es, etc.
Hydrophytic Vegetati	on Present?	Yes	х	No	Is the	Sampled Ar	ea			
Hydric Soil Present?		Yes	Х	No	withi	n a Wetland?	γ Υ€	s <u>X</u>	No	
Wetland Hydrology F	'resent?	Yes	Х	No	If yes	, optional We	tland Site ID:			
Remarks: (Explain a	Iternative pro	cedures here or i	in a s	eparate repc	ort.)					

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)	
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Cracks (B6)	
Surface Water (A1)	Water-Stained Leaves (B9)		Drainage Patterns (B10)	
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)	
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)	
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)		
Sediment Deposits (B2)	X Oxidized Rhizospheres on Living Ro	g Roots (C3) Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	; (C6)	Geomorphic Position (D2)	
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)	
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)		Microtopographic Relief (D4)	
X Sparsely Vegetated Concave Surface (B	3)		X FAC-Neutral Test (D5)	
Field Observations:				
Surface Water Present? Yes	No X Depth (inches):			
Water Table Present? Yes	No X Depth (inches):			
Saturation Present? Yes	No X Depth (inches): No X Depth (inches):	Wetland	d Hydrology Present? Yes X No	
		Wetland	d Hydrology Present? Yes <u>X</u> No	
Saturation Present? Yes	No X Depth (inches):		· · · ·	
Saturation Present? Yes (includes capillary fringe)	No X Depth (inches):		· · · ·	
Saturation Present? Yes (includes capillary fringe)	No X Depth (inches):		· · · ·	
Saturation Present? Yes (includes capillary fringe)	No X Depth (inches):		· · · ·	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):		· · · ·	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):		· · · ·	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):		· · · ·	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):		· · · ·	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):		· · · ·	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):		· · · ·	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):		· · · ·	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):		· · · ·	

Sampling Point: D-W

Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Fraxinus pennsylvanica	50	Yes	FACW	Number of Dominant Species
2.				That Are OBL, FACW, or FAC: 4 (A)
3.				Total Number of Dominant
4.				Species Across All Strata:4(B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
7				Prevalence Index worksheet:
	50	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)				OBL species <u>60</u> x 1 = <u>60</u>
1				FACW species 75 x 2 = 150
2				FAC species 0 x 3 = 0
3				FACU species 0 x 4 = 0
4				UPL species 0 x 5 = 0
5				Column Totals: 135 (A) 210 (B)
6				Prevalence Index = B/A = 1.56
7				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)				X 2 - Dominance Test is >50%
1. Boehmeria cylindrica	35	Yes	OBL	X 3 - Prevalence Index is $\leq 3.0^1$
2. Persicaria pensylvanica	25	Yes	FACW	4 - Morphological Adaptations ¹ (Provide supporting
3. Persicaria hydropiper	25	Yes	OBL	data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	85	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size:)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Hydrophytic
3				Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	rate sheet.)			

SOIL

Profile Desc	ription: (Describe	to the dep	oth needed to docu	ument th	ne indica	ator or co	onfirm the absence of	f indicators.)
Depth	Matrix		Redox	x Featur	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-10	2.5Y 3/1	90	7.5YR 4/6	10	С	PL/M	Loamy/Clayey	Prominent redox concentrations
10-18	2.5Y 3/1	85	7.5YR 4/6	15	C	М	Loamy/Clayey	Prominent redox concentrations
		<u> </u>						
		<u> </u>						
		<u> </u>						
¹ Type: C=Co	ncentration, D=Depl	etion, RM	Reduced Matrix, N	IS=Masł	ked Sand	Grains.	² Location: Pl	L=Pore Lining, M=Matrix.
Hydric Soil I	ndicators:						Indicators for	or Problematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Belo	w Surfa	ce (S8) (LRR R,	2 cm Mu	ick (A10) (LRR K, L, MLRA 149B)
Histic Ep	ipedon (A2)		MLRA 149B)			Coast Pr	rairie Redox (A16) (LRR K, L, R)
Black His			Thin Dark Surfa	,	(LRR R	. MLRA 1		icky Peat or Peat (S3) (LRR K, L, R)
	n Sulfide (A4)		High Chroma S		-			e Below Surface (S8) (LRR K, L)
				-				
	Layers (A5)	(, , , ,)	Loamy Mucky I			r r , l)		k Surface (S9) (LRR K, L)
	Below Dark Surface	e (A11)	Loamy Gleyed		F2)			nganese Masses (F12) (LRR K, L, R)
	rk Surface (A12)		Depleted Matrix					nt Floodplain Soils (F19) (MLRA 149B)
Sandy M	ucky Mineral (S1)		X Redox Dark Su				Mesic Sp	podic (TA6) (MLRA 144A, 145, 149B)
Sandy G	leyed Matrix (S4)		Depleted Dark	Surface	(F7)		Red Pare	ent Material (F21)
Sandy Re	edox (S5)		X Redox Depress	sions (F8	3)		Very Sha	allow Dark Surface (F22)
Stripped	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (E	xplain in Remarks)
	face (S7)	·		, ,				,
³ Indicators of	hydrophytic vegetat	ion and we	etland hydrology mu	ist be pr	esent, ur	nless dist	urbed or problematic.	
Restrictive L	ayer (if observed):							
Туре:								
Depth (in	ches):						Hydric Soil Presen	nt? Yes <u>X</u> No
Remarks:								
	n is revised from No 2015 Errata. (http://w		0					CS Field Indicators of Hydric Soils,

Project/Site: Massen	na Greer	n Hydro	gen Facility				City/County: M	asser	na/St. Lawrence		Sampling Date:	10-5	5-2022
Applicant/Owner:	Air Pro	oducts							State	NY	Sampling Poin	it:	E-W
Investigator(s): BAB							Sectio	n, To	wnship, Range:				
Landform (hillside, terr	race, etc	c.): <u>C</u>	Depression			Local re	elief (concave,	conve	x, none): Conc	ave	Slop	e %:	0-2
Subregion (LRR or ML	_RA):	LRR R,	MLRA 142	Lat:	44.961364		1	_ong:	-74.907268		Datum:	WG	S 84
Soil Map Unit Name:	MnB - I	Malone	Loam						NWI class	ification:	N/A		
Are climatic / hydrolog	jic condi	itions o	n the site typi	ical for	this time of	year?	Yes	Х	No	(If no, e	explain in Remark	(s.)	
Are Vegetation	, Soil	<u>,</u>	or Hydrology		significantl	y disturb	ed? Are	"Norn	nal Circumstand	es" pres	ent? Yes X	No	
Are Vegetation	, Soil	<u>,</u>	or Hydrology		naturally p	roblemat	ic? (If n	eedeo	d, explain any a	nswers ir	n Remarks.)		
SUMMARY OF F	INDING	GS – /	Attach site	e map	o showing	g samp	oling point l	ocat	ions, transe	ects, im	portant featu	ıres,	etc.
Hydrophytic Vegetati	ion Pres	ent?	Yes	s_X	No		Is the Samp	led A	rea				
Hydric Soil Present?			Yes	s X	No		within a We	tland	? Ye	s <u>X</u>	No		
Wetland Hydrology P	resent?)	Yes	s <u>X</u>	No	_	If yes, option	al We	etland Site ID:				
Remarks: (Explain a	Iternativ	e proce	dures here o	or in a s	eparate rep	ort.)							

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is require	ed; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	Water-Stained Leaves (B9)	Drainage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	oots (C3) X Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	ls (C6) Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	? Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Microtopographic Relief (D4)
X Sparsely Vegetated Concave Surface (B	8)	X FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes	No X Depth (inches):	
Water Table Present? Yes	No X Depth (inches):	
Saturation Present? Yes	No X Depth (inches):	Wetland Hydrology Present? Yes X No
		Wetland Hydrology Present? Yes X No
Saturation Present? Yes	No X Depth (inches):	
Saturation Present? Yes (includes capillary fringe)	No X Depth (inches):	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):	
Saturation Present? Yes (includes capillary fringe)	No X Depth (inches):	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):	
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):	

Sampling Point: E-W

Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:3(A)
3				Total Number of Dominant Species Across All Strata: <u>3</u> (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC:100.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)				OBL species <u>3</u> x 1 = <u>3</u>
1. Fraxinus pennsylvanica	5	Yes	FACW	FACW species 7 x 2 = 14
2				FAC species 0 x 3 = 0
3				FACU species 0 x 4 = 0
4				UPL species x 5 =
5				Column Totals: 10 (A) 17 (B)
6				Prevalence Index = B/A =1.70
7				Hydrophytic Vegetation Indicators:
	5	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)				X 2 - Dominance Test is >50%
1. Lysimachia nummularia	2	Yes	FACW	X 3 - Prevalence Index is $\leq 3.0^1$
2carex lurida	3	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				¹ Indicators of hydric soil and wetland hydrology must
6.				be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10 11				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12	5	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size:)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				
3.				Hydrophytic Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

Profile Des	cription: (Describe	to the de	pth needed to docu	ument t	he indica	ator or co	onfirm the absence o	of indicators.)
Depth	Matrix		Redo	x Featur	res			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-4	10YR 2/1	100					Loamy/Clayey	
4-12	2.5Y 4/2	95	10YR 5/6	5	С	M	Loamy/Clayey	Prominent redox concentrations
			·					
¹ Type ⁻ C=C	oncentration, D=Depl	letion RM		IS=Mas	ked Sand	Grains	² Location ⁻ F	PL=Pore Lining, M=Matrix.
Hydric Soil						- or cannot		or Problematic Hydric Soils ³ :
Histosol			Polyvalue Belo	w Surfa	ce (S8) (I	LRR R,		uck (A10) (LRR K, L, MLRA 149B)
Histic E	pipedon (A2)		MLRA 149B)			Coast P	rairie Redox (A16) (LRR K, L, R)
	istic (A3)		Thin Dark Surf					ucky Peat or Peat (S3) (LRR K, L, R)
	en Sulfide (A4)		High Chroma S	-				ie Below Surface (S8) (LRR K, L)
	d Layers (A5)		Loamy Mucky			R K, L)		rk Surface (S9) (LRR K, L)
	d Below Dark Surface	e (A11)	Loamy Gleyed		F2)			nganese Masses (F12) (LRR K, L, R)
	ark Surface (A12)		X Depleted Matri					nt Floodplain Soils (F19) (MLRA 149B)
	/lucky Mineral (S1)		Redox Dark Su					podic (TA6) (MLRA 144A, 145, 149B)
	Bleyed Matrix (S4)		Depleted Dark		. ,			rent Material (F21)
	Redox (S5)		X Redox Depress	`	8)			allow Dark Surface (F22)
	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (E	Explain in Remarks)
Dark Su	rface (S7)							
³ Indicators o	f hydrophytic vegetat	ion and w	etland hydrology mu	ist be pr	esent ur	nless dist	urbed or problematic.	
	Layer (if observed):		ionana nyarology me					
Type:	Hard	pan						
Depth (i	nches):	12					Hydric Soil Prese	nt? Yes <u>X</u> No
Remarks:								
	m is revised from No 2015 Errata. (http://w							CS Field Indicators of Hydric Soils,
			5				1_1	

Project/Site: Masser	na Green Hyo	drogen Facility			City/Co	unty: Masser	na/St. Lawrence	e	Sampling Date:	10-5-2022	2
Applicant/Owner:	Air Product	6					State	: NY	Sampling Poir	nt: F-W	
Investigator(s): BAB						Section, To	wnship, Range				
Landform (hillside, ter	race, etc.):	Depression			Local relief (co	ncave, conve	ex, none): Conc	ave	Slop	e %: <u>0-2</u>	2
Subregion (LRR or ML	_RA): LRR	R, MLRA 142	Lat:	44.963209		Long:	-74.905983		Datum:	WGS 84	
Soil Map Unit Name:	MnB - Malo	ne Loam					NWI class	sification	: <u>N/A</u>		
Are climatic / hydrolog	gic conditions	on the site typic	al for	this time of y	ear?	Yes X	No	(If no,	explain in Remark	(s.)	
Are Vegetation	, Soil	, or Hydrology		significantly	disturbed?	Are "Norn	nal Circumstan	ces" pres	sent? Yes <u>X</u>	No	
Are Vegetation	, Soil	, or Hydrology		naturally pro	oblematic?	(If needed	d, explain any a	answers i	n Remarks.)		
SUMMARY OF F		– Attach site	map	showing	sampling	point locat	ions, trans	ects, in	nportant featı	ires, etc.	•
Hydrophytic Vegetati	on Present?	Yes	х	No	Is th	e Sampled A	rea				
Hydric Soil Present?		Yes	Х	No	with	n a Wetland	? Y€	s <u>X</u>	No		
Wetland Hydrology F	Present?	Yes	Х	No	If yes	s, optional We	etland Site ID:				_
Remarks: (Explain a	lternative pro	ocedures here or	in a s	eparate repo	ort.)						

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required	<u>d)</u>	
Primary Indicators (minimum of one is requir	ed; check all that apply)		Surface Soil Cracks (B6)		
Surface Water (A1)	Water-Stained Leaves (B9)		X Drainage Patterns (B10)		
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)		
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)		
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)			
Sediment Deposits (B2)	X Oxidized Rhizospheres on Living Roots (C3) Saturation Vis		Saturation Visible on Aerial Imagery (C9)		
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (C6)		Geomorphic Position (D2)		
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)		
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)		Microtopographic Relief (D4)		
Sparsely Vegetated Concave Surface (E	38)		X FAC-Neutral Test (D5)		
Field Observations:		[
Surface Water Present? Yes	No X Depth (inches):				
Water Table Present? Yes	No X Depth (inches):				
Water Table Present? Yes Saturation Present? Yes	No X Depth (inches): No X Depth (inches):	Wetlan	d Hydrology Present? Yes X No		
		Wetlan	d Hydrology Present? Yes X No		
Saturation Present? Yes	No X Depth (inches):				
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):				
Saturation Present? Yes	No X Depth (inches):				
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):				
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):				
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):				
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):				
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):				
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):				
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):				
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):				

Sampling Point: F-W

Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:3(A)
3. 4.				Total Number of Dominant Species Across All Strata: <u>3</u> (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
7				Prevalence Index worksheet:
	:	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size:15)				OBL species 2 x 1 = 2
1. Fraxinus pennsylvanica	2	No	FACW	FACW species 82 x 2 = 164
2. Rhamnus cathartica	20	Yes	FAC	FAC species 20 x 3 = 60
3. Cornus amomum	30	Yes	FACW	FACU species 0 x 4 = 0
4				UPL species 0 x 5 = 0
5.				Column Totals: 104 (A) 226 (B)
6.				Prevalence Index = B/A = 2.17
7.				Hydrophytic Vegetation Indicators:
	52	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)				X 2 - Dominance Test is >50%
1. Onoclea sensibilis	50	Yes	FACW	X 3 - Prevalence Index is ≤3.0 ¹
2. Lycopus americanus	2	No	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
o 7				Definitions of Vegetation Strata:
8 9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				
11.				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12	52	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size:)				
1,				Woody vines – All woody vines greater than 3.28 ft in height.
2.				Hudro physic
3				Hydrophytic Vegetation
4				Present? Yes X No
	:	=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

SOIL

Profile Desc	ription: (Describe	to the de	pth needed to docu	ument ti	he indica	tor or co	onfirm the absence of i	ndicators.)
Depth	 Matrix			x Featur				,
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-10	10YR 3/2	95	7.5YR 4/6	5	С	PL/M	Loamy/Clayey	Prominent redox concentrations
10-18	10YR 4/2	95	10YR 5/6	5	С	Μ	Loamy/Clayey	Prominent redox concentrations
	oncentration, D=Dep	letion, RM	=Reduced Matrix, M	1S=Masl	ked Sand	l Grains.		Pore Lining, M=Matrix.
Hydric Soil								Problematic Hydric Soils ³ :
Histosol			Polyvalue Belo		ce (S8) (I	LRR R,		(A10) (LRR K, L, MLRA 149B)
	pipedon (A2)		MLRA 149B	,				rie Redox (A16) (LRR K, L, R)
	stic (A3) n Sulfide (A4)		Thin Dark Surf High Chroma S		-			y Peat or Peat (S3) (LRR K, L, R) Below Surface (S8) (LRR K, L)
	l Layers (A5)		Loamy Mucky					
	Below Dark Surface	ο (Δ11)	Loamy Gleyed			Υ Ν, Ε)		Surface (S9) (LRR K, L) anese Masses (F12) (LRR K, L, R)
	ark Surface (A12)	5 (ATT)	X Depleted Matri		12)			Floodplain Soils (F19) (MLRA 149B)
	lucky Mineral (S1)		X Redox Dark Su		6)			dic (TA6) (MLRA 144A, 145, 149B)
	leyed Matrix (S4)		Depleted Dark	`	,			t Material (F21)
	edox (S5)		X Redox Depress		· · /			ow Dark Surface (F22)
	Matrix (S6)		Marl (F10) (LR		5)			lain in Remarks)
	rface (S7)			, _/				
—	()							
³ Indicators of	f hydrophytic vegetat	ion and w	etland hydrology mι	ist be pr	esent, ur	less dist	urbed or problematic.	
Restrictive L	_ayer (if observed):							
Type:								
Depth (ir	nches):						Hydric Soil Present?	Yes X No
Remarks:								
								Field Indicators of Hydric Soils,
Version 7.0,	2015 Errata. (http://v	ww.nrcs.u	usda.gov/Internet/FS	SE_DOC	UMENT	S/nrcs14	2p2_051293.docx)	

Project/Site: Masse	na Green Hyd	rogen Facility		City/	County: Massen	a/St. Lawrence		Sampling Date: 1	0-5-2022
Applicant/Owner:	Air Products					State:	NY	Sampling Point:	F-U
Investigator(s): BAB					Section, Tov	nship, Range:			
Landform (hillside, ter	race, etc.):	Terrace		Local relief	(concave, conve	k, none): None		Slope	%: 3-5
Subregion (LRR or M	LRA): LRR I	R, MLRA 142	Lat:	44.963062	Long:	-74.906199		Datum: \	NGS 84
Soil Map Unit Name:	HnB - Hogar	nsburg Loam				NWI classi	fication:	N/A	
Are climatic / hydrolog	gic conditions	on the site typic	al for	this time of year?	Yes X	No	(If no,	explain in Remarks.)
Are Vegetation	, Soil	, or Hydrology		significantly disturbed?	Are "Norm	al Circumstanc	es" pres	ent? Yes <u>X</u>	No
Are Vegetation	, Soil	, or Hydrology		naturally problematic?	(If needed	, explain any ar	nswers ir	n Remarks.)	
SUMMARY OF F	INDINGS -	Attach site	map	showing sampling	g point locati	ons, transe	cts, in	portant feature	es, etc.

Hydrophytic Vegetation Present?	Yes	No X	Is the Sampled Area within a Wetland? Yes No X If yes, optional Wetland Site ID:
Hydric Soil Present?	Yes	No X	
Wetland Hydrology Present?	Yes	No X	
Remarks: (Explain alternative procedur	es here or in a	separate report.)	

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is require	ed; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	Water-Stained Leaves (B9)	Drainage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Roots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (C6)	Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	? Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (E	38)	FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes	No X Depth (inches):	
Water Table Present? Yes	No X Depth (inches):	
Saturation Present? Yes	No X Depth (inches): Wetlan	nd Hydrology Present? Yes <u>No X</u>
(includes capillary fringe)		
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos, previous inspections), if	available:
Remarks:		

Sampling Point:

F-U

	Yes No Total Cover No Yes No	FACW FACW FACU FAC FACU FACW	Number of Dominant Species That Are OBL, FACW, or FAC:2Total Number of Dominant Species Across All Strata:5Percent of Dominant Species That Are OBL, FACW, or FAC: 40.0% (APrevalence Index worksheet: 40.0% (ATotal % Cover of:Multiply by:OBL species0x 1 =0FACW species30x 2 =60FAC species15x 3 =45FACU species50x 4 =200UPL species0x 5 =0Column Totals:95(A)305
	Total Cover No Yes Yes	FACU FAC FACU	That Are OBL, FACW, or FAC:2(ATotal Number of Dominant Species Across All Strata:5(APercent of Dominant Species That Are OBL, FACW, or FAC:40.0%(APrevalence Index worksheet:40.0%(ATotal % Cover of:Multiply by:0OBL species0 $x 1 = 0$ FACW species30 $x 2 = 60$ FAC species15 $x 3 = 45$ FACU species50 $x 4 = 200$ UPL species0 $x 5 = 0$
	No Yes Yes	FAC FACU	Species Across All Strata:5(E)Percent of Dominant Species That Are OBL, FACW, or FAC: 40.0% (APrevalence Index worksheet: 100% (ATotal % Cover of:Multiply by:OBL species0x 1 =0FACW species30x 2 =60FAC species15x 3 =45FACU species50x 4 =200UPL species0x 5 =0
	No Yes Yes	FAC FACU	That Are OBL, FACW, or FAC: 40.0% (APrevalence Index worksheet:Multiply by:Total % Cover of:Multiply by:OBL species0x 1 =ACW species30x 2 =FACW species15x 3 =FACU species50x 4 =QUPL species0x 5 =
	No Yes Yes	FAC FACU	Total % Cover of:Multiply by:OBL species0 $x 1 = 0$ FACW species30 $x 2 = 60$ FAC species15 $x 3 = 45$ FACU species50 $x 4 = 200$ UPL species0 $x 5 = 0$
	No Yes Yes	FAC FACU	OBL species0 $x 1 =$ 0FACW species30 $x 2 =$ 60FAC species15 $x 3 =$ 45FACU species50 $x 4 =$ 200UPL species0 $x 5 =$ 0
	Yes Yes	FAC FACU	FACW species 30 x 2 = 60 FAC species15x 3 = 45 FACU species 50 x 4 = 200 UPL species0x 5 = 0
	Yes Yes	FAC FACU	FAC species15 $x \ 3 =$ 45FACU species50 $x \ 4 =$ 200UPL species0 $x \ 5 =$ 0
	Yes	FACU	FACU species 50 $x 4 =$ 200 UPL species0 $x 5 =$ 0
			UPL species 0 x 5 = 0
·	No	FACW	· · · · · · · · · · · · · · · · · · ·
			Column Totals: 95 (A) 305
			Prevalence Index = B/A = 3.21
			Hydrophytic Vegetation Indicators:
_	Total Cover		1 - Rapid Test for Hydrophytic Vegetation
			2 - Dominance Test is >50%
	No	FACW	3 - Prevalence Index is ≤3.0 ¹
			4 - Morphological Adaptations ¹ (Provide suppo
			data in Remarks or on a separate sheet)
			Problematic Hydrophytic Vegetation ¹ (Explain)
·	165	TACO	
			¹ Indicators of hydric soil and wetland hydrology mu be present, unless disturbed or problematic.
·			
·			Definitions of Vegetation Strata:
			Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height (DBH), regardless of height (DBH) and the statemeter at breast height (DBH).
			Sapling/shrub – Woody plants less than 3 in. DB
·			and greater than or equal to 3.28 ft (1 m) tall.
	Total Cover		Herb – All herbaceous (non-woody) plants, regardl of size, and woody plants less than 3.28 ft tall.
			Woody vines – All woody vines greater than 3.28 height.
			Hydrophytic
			Vegetation Present? Yes No X
	Total Cover		
		=Total Cover	Yes FACU No FACW Yes FACU Yes FACU

	cription: (Describe	to the dep				tor or co	onfirm the absence of ind	icators.)
Depth	Matrix			x Featu		. 2		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-12	10YR 3/3	100			. <u> </u>		Loamy/Clayey	
		·			· <u> </u>			
					. <u> </u>			
		•			· <u> </u>			
					·			
		·			·			
		·			·			
¹ Type: C=C	oncentration, D=Dep	letion, RM	Reduced Matrix, N	/IS=Mas	ked Sand	Grains.	² Location: PL=Po	ore Lining, M=Matrix.
Hydric Soil		· · · ·	· · · · ·					oblematic Hydric Soils ³ :
Histosol	(A1)	_	Polyvalue Belo	ow Surfa	ace (S8) (I	LRR R,	2 cm Muck (A	A10) (LRR K, L, MLRA 149B)
Histic E	pipedon (A2)		MLRA 1498	5)			Coast Prairie	Redox (A16) (LRR K, L, R)
Black H	istic (A3)		Thin Dark Sur	ace (S9) (LRR R	, MLRA [·]	149B) 5 cm Mucky	Peat or Peat (S3) (LRR K, L, R)
Hydroge	en Sulfide (A4)		High Chroma	Sands (S	S11) (LRF	R K, L)	Polyvalue Be	low Surface (S8) (LRR K, L)
Stratifie	d Layers (A5)		Loamy Mucky	Mineral	(F1) (LRF	R K, L)	Thin Dark Su	rface (S9) (LRR K, L)
Deplete	d Below Dark Surface	e (A11)	Loamy Gleyed	Matrix ((F2)		Iron-Mangan	ese Masses (F12) (LRR K, L, R)
Thick Da	ark Surface (A12)		Depleted Matr	x (F3)			Piedmont Flo	odplain Soils (F19) (MLRA 149B
Sandy N	/lucky Mineral (S1)		Redox Dark S	urface (F	=6)		Mesic Spodie	c (TA6) (MLRA 144A, 145, 149B)
Sandy G	Gleyed Matrix (S4)		Depleted Dark	Surface	e (F7)		Red Parent N	laterial (F21)
Sandy R	Redox (S5)		Redox Depres				Very Shallow	Dark Surface (F22)
	l Matrix (S6)		Marl (F10) (LF	R K, L)			Other (Explai	n in Remarks)
Dark Su	rface (S7)							
31	f			4 1		1		
	Layer (if observed):	ion and we	eliand hydrology mi	ust be pi	resent, un	liess dist	urbed or problematic.	
Type:	Hard	pan						
Depth (ii		12					Hydric Soil Present?	Yes No X
		12						
Remarks: This data for	m is revised from No	orthcentral	and Northeast Reg	ional Su	Innlement	Version	2.0 to include the NRCS E	eld Indicators of Hydric Soils,
	2015 Errata. (http://w							iela malcators or riyane oons,
			g					

Project/Site: Massena	a Green Hyd	rogen Facility			City/County:	Masser	a/St. Lawrend	e	Sampling Date:	10-5-2022
Applicant/Owner:	Air Products						Stat	e: NY	Sampling Point	: <u>1-U</u>
Investigator(s): BAB					Sec	ction, To	vnship, Range	e:		
Landform (hillside, terra	ice, etc.):	Terrace		Local r	elief (concav	e, conve	x, none): <u>Non</u>	е	Slope	%: 3-5
Subregion (LRR or MLF	RA): LRR F	R, MLRA 142	Lat:	44.962783		Long:	-74.907014		Datum:	WGS 84
Soil Map Unit Name: I	HnB - Hogar	sburg loam					NWI clas	sificatior	n: <u>N/A</u>	
Are climatic / hydrologic	c conditions	on the site typica	al for th	nis time of year?	Y	es <u>X</u>	No	(lf no	, explain in Remarks	;.)
Are Vegetation,	Soil	, or Hydrology	:	significantly disturb	bed? A	re "Norn	nal Circumsta	nces" pre	esent? Yes X	No
Are Vegetation,	Soil	, or Hydrology		naturally problemat	tic? (I	If needeo	l, explain any	answers	in Remarks.)	
SUMMARY OF FIN	NDINGS -	Attach site	map	showing samp	pling poin	t locat	ions, trans	ects, i	mportant featur	es, etc.

Hydrophytic Vegetation Present?	Yes <u>X</u>	No	Is the Sampled Area within a Wetland? Yes No _ X If yes, optional Wetland Site ID:
Hydric Soil Present?	Yes	No _ X	
Wetland Hydrology Present?	Yes	No _ X	
Remarks: (Explain alternative procedures h	ere or in a se	eparate report.)	

Wetland Hydrology Indicators:			Secondary Indicators (mining	mum of two required)
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Cracks (B	6)
Surface Water (A1)	Water-Stained Leaves (B9)		Drainage Patterns (B10	D)
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)	
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Tab	ole (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)	
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	oots (C3)	Saturation Visible on A	erial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Pla	ants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	s (C6)	Geomorphic Position (I	D2)
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)	
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)		Microtopographic Relie	f (D4)
Sparsely Vegetated Concave Surface (B8	3)		FAC-Neutral Test (D5)	. ,
Field Observations:				
Surface Water Present? Yes	No X Depth (inches):			
Water Table Present? Yes	No X Depth (inches):			
Saturation Present? Yes	No X Depth (inches):	Wetlan	d Hydrology Present?	Yes No X
(includes capillary fringe)				
Describe Recorded Data (stream gauge, mon	itoring well, aerial photos, previous inspe	ctions), if a	available:	
Remarks:				

Sampling Point: 1-U

<u>Tree Stratum</u> (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Acer rubrum	20	Yes	FAC	Number of Dominant Spacing
2. Populus tremuloides	30	Yes	FACU	Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
3				Total Number of Dominant
4.				Species Across All Strata: <u>4</u> (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC:
7				Prevalence Index worksheet:
	50	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)				OBL species x 1 =
1. viburnum lentago	2	No	FAC	FACW species 60 x 2 = 120
2. Rhamnus cathartica	30	Yes	FAC	FAC species 52 x 3 = 156
3				FACU species 30 x 4 = 120
4				UPL species 0 x 5 = 0
5				Column Totals: 142 (A) <u>396</u> (B)
6				Prevalence Index = B/A = 2.79
7				Hydrophytic Vegetation Indicators:
	32	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)				X 2 - Dominance Test is >50%
1. onoclea sensibilis	60	Yes	FACW	3 - Prevalence Index is ≤3.0 ¹
2				4 - Morphological Adaptations ¹ (Provide supporting
3				data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	60	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size:)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				
3				Hydrophytic Vegetation
4.				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

Depth Matrix Redox Features (inches) Color (moist) % Color (moist) % Type ¹ Loc ² Texture Remarks 0-8 10YR 3/2 100
0-8 10YR 3/2 100 Loamy/Clayey
8-16 10YR 4/3 95 10YR 5/6 5 c m Distinct redox concentrations
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators: Indicators:
Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B)
Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R)
Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R)
Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L)
Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L)
Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R)
Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B)
Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21)
Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22)
Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks)
Dark Surface (S7)
³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.
Restrictive Layer (if observed):
Туре:
Depth (inches): Hydric Soil Present? Yes No X
Remarks:
This data form is revised from Northcentral and Northeast Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 7.0, 2015 Errata. (http://www.nrcs.usda.gov/Internet/FSE DOCUMENTS/nrcs142p2 051293.docx)
Version 7.0, 2015 Enata. (http://www.nics.usda.gov/internet/FSE_DOCOMENTS/nics142p2_051295.docx)

Project/Site: Masser	na Green Hyd	rogen Facility	City/County: Massena/St. Lawrence Sampling Date: 10-5-							5-2022			
Applicant/Owner:	Air Products		State: NY Sampling Point: G-W										
Investigator(s): BAB	nvestigator(s): BAB Section, Township, Range:												
Landform (hillside, terr	race, etc.):	Depression		!	Local relie	f (concave	, conve	x, none):	Concav	е	Slop	be %:	0-2
Subregion (LRR or ML	_RA): <u>LRR (</u>	R, MLRA 142	Lat:	44.961734			Long:	-74.9070	066		Datum:	WG	GS 84
Soil Map Unit Name:	HnB - Hogar	nsburg Loam						NWI	classific	cation:	N/A		
Are climatic / hydrolog	jic conditions	on the site typica	al for	this time of ye	ear?	Ye	s <u>X</u>	No		(If no, e	explain in Remarl	ks.)	
Are Vegetation	, Soil	, or Hydrology		significantly	disturbed	P Ar	e "Norm	nal Circun	nstances	s" prese	ent? Yes X	_ No)
Are Vegetation	, Soil	, or Hydrology		naturally pro	blematic?	(If	needed	l, explain	any ans	wers in	Remarks.)		
SUMMARY OF F	INDINGS -	- Attach site	map	showing	sampliı	ng point	locati	ions, tr	ansect	ts, im	portant featu	ures	, etc.
Hydrophytic Vegetati	on Present?	Yes	х	No	1	s the Sam	pled Ar	rea					
Hydric Soil Present?		Yes	Х	No	v	vithin a W	etland?	?	Yes	Х	No		
Wetland Hydrology F	'resent?	Yes	Х	No	ľ	f yes, optio	nal We	tland Site	D:				
Remarks: (Explain a	Iternative pro	cedures here or	in a s	eparate repo	rt.)	·							

Wetland Hydrology Indicators:			Secondary Indicators (minimum of two required)			
Primary Indicators (minimum of one is require	Surface Soil Cracks (B6)					
Surface Water (A1)	Water-Stained Leaves (B9)		Drainage Patterns (B10)			
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)			
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)			
Water Marks (B1)	Hydrogen Sulfide Odor (C1)		Crayfish Burrows (C8)			
Sediment Deposits (B2)	X Oxidized Rhizospheres on Living Ro	oots (C3)	Saturation Visible on Aerial Imagery (C9)			
Drift Deposits (B3)	Presence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)			
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	s (C6)	Geomorphic Position (D2)			
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)			
X Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)		Microtopographic Relief (D4)			
X Sparsely Vegetated Concave Surface (B	8)		X FAC-Neutral Test (D5)			
Field Observations:						
Surface Water Present? Yes	No X Depth (inches):					
Water Table Present? Yes	No X Depth (inches):					
Saturation Present? Yes	No X Depth (inches):	Wetlan	d Hydrology Present? Yes X No			
		Wetlan	d Hydrology Present? Yes X No			
Saturation Present? Yes	No X Depth (inches):					
Saturation Present? Yes (includes capillary fringe)	No X Depth (inches):					
Saturation Present? Yes (includes capillary fringe)	No X Depth (inches):					
Saturation Present? Yes (includes capillary fringe)	No X Depth (inches):					
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):					
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):					
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):					
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):					
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):					
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):					
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):					
Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, mor	No X Depth (inches):					

Sampling Point: G-W

3.	A) B) A/B)
3.	,
6.	4/B) -
7. Prevalence Index worksheet:	-
Sapling/Shrub Stratum (Plot size: 15) OBL species 80 x 1 = 80	-
	-
1 FACW species 0 x 2 = 0	
2 FAC species 0 x 3 = 0	-
3. FACU species 0 x 4 = 0	-
4 UPL species x 5 =	-
5 Column Totals: 80 (A) 80	- (B)
6 Prevalence Index = B/A =1.00	-``
7. Hydrophytic Vegetation Indicators:	
=Total Cover 1 - Rapid Test for Hydrophytic Vegetation	
Herb Stratum (Plot size: 5 X 2 - Dominance Test is >50%	
I. Boehmeria cylindrica80YesOBLX 3 - Prevalence Index is $\leq 3.0^1$	
2 / Morphological Adoptations ¹ (Provide supp	ortina
data in Remarks or on a separate sheet)	Jung
	`
4 Problematic Hydrophytic Vegetation ¹ (Explain)
5 ¹ Indicators of hydric soil and wetland hydrology m	ust
6. be present, unless disturbed or problematic.	
7 Definitions of Vegetation Strata:	
8 Tree – Woody plants 3 in. (7.6 cm) or more in	
9 diameter at breast height (DBH), regardless of he	ght.
10 Sapling/shrub – Woody plants less than 3 in. DE	н
11 and greater than or equal to 3.28 ft (1 m) tall.	
12.	less
Woody Vine Stratum (Plot size:) Woody vines – All woody vines greater than 3.28	ft in
1 height.	
2	
3 Hydrophytic Vegetation	
4. Present? Yes X No	
=Total Cover	
Remarks: (Include photo numbers here or on a separate sheet.)	

SOIL

Profile Des	cription: (Describe	to the de	pth needed to doc	ument th	he indica	ator or c	onfirm the absence of i	ndicators.)
Depth	Matrix		Redo	x Featur	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-10	2.5Y 3/1	90	7.5YR 4/6	10	С	PL/M	Loamy/Clayey	Prominent redox concentrations
10-18	2.5Y 3/1	85	7.5YR 4/6	15	С	М	Loamy/Clayey	Prominent redox concentrations
		. <u> </u>						
						—		
		. <u> </u>						
						·		
	oncentration, D=Depl	letion, RN	I=Reduced Matrix, N	/IS=Masł	ked Sand	l Grains.	² Location: PL=	Pore Lining, M=Matrix.
Hydric Soil								Problematic Hydric Soils ³ :
Histosol			Polyvalue Belo		ce (S8) (I	LRR R,		(A10) (LRR K, L, MLRA 149B)
	pipedon (A2)		MLRA 149B	,				rie Redox (A16) (LRR K, L, R)
	istic (A3)		Thin Dark Surf		-			(y Peat or Peat (S3) (LRR K, L, R)
	en Sulfide (A4)		High Chroma S					Below Surface (S8) (LRR K, L)
	d Layers (A5)	() () ()	Loamy Mucky			Κ Κ, L)		Surface (S9) (LRR K, L)
	d Below Dark Surface	e (A11)	Loamy Gleyed		F2)			anese Masses (F12) (LRR K, L, R)
	ark Surface (A12)		Depleted Matri	• •				Floodplain Soils (F19) (MLRA 149B)
	Nucky Mineral (S1)		X Redox Dark Su	``	,			dic (TA6) (MLRA 144A, 145, 149B)
	Bleyed Matrix (S4)		Depleted Dark		. ,			t Material (F21)
	edox (S5)		X Redox Depress	-	3)			ow Dark Surface (F22)
	Matrix (S6)		Marl (F10) (LR	(R K, L)			Other (Exp	olain in Remarks)
Dark Su	rface (S7)							
³ Indicators o	f hydrophytic yogotat	ion and w	votland bydrology m	ist bo pr	ocont ur	loce dict	urbod or problematic	
	Layer (if observed):		etiana nyarology ma	ust be pr	esent, u		urbed or problematic.	
Type:								
Depth (ii	nches):						Hydric Soil Present	? Yes <u>X</u> No
Remarks:								
	m is revised from No	orthcentral	and Northeast Reg	ional Su	pplement	Version	2.0 to include the NRCS	Field Indicators of Hydric Soils,
Version 7.0,	2015 Errata. (http://w	ww.nrcs.	usda.gov/Internet/F	SE_DOC	UMENT	S/nrcs14	2p2_051293.docx)	

Project/Site: Masser	na Green ⊦	Hydrogen Facility		(City/County: Masser	a/St. Lawrence		Sampling Date: 10)-5-2022
Applicant/Owner:	Air Produ	icts				State:	NY	Sampling Point:	G-U
Investigator(s): BAB					Section, To	wnship, Range:			
Landform (hillside, terr	race, etc.):	Terrace		Local re	lief (concave, conve	x, none): None		Slope %	6: 3-5
Subregion (LRR or ML	.RA): <u>L</u> F	RR R, MLRA 142	Lat:	44.961665	Long:	-74.906739		Datum: W	/GS 84
Soil Map Unit Name:	MaB - M	alone loam				NWI classi	fication:	N/A	
Are climatic / hydrolog	ic conditio	ons on the site typic	al for t	this time of year?	Yes X	No	(lf no,	explain in Remarks.)	
Are Vegetation	, Soil	, or Hydrology		significantly disturbe	ed? Are "Norn	nal Circumstanc	es" pres	ent? Yes <u>X</u> N	lo
Are Vegetation	, Soil	, or Hydrology		naturally problemation	c? (If needed	l, explain any ar	iswers i	n Remarks.)	
SUMMARY OF FI	INDING	S – Attach site	map	showing samp	ling point locat	ions, transe	cts, in	nportant feature	s, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X Yes Yes	No No X No X	Is the Sampled Area within a Wetland? If yes, optional Wetland S	Yes ite ID:	NoX
Remarks: (Explain alternative procedure	s here or in a s	eparate report.)			

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is requi	red; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	Water-Stained Leaves (B9)	Drainage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Ro	ots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	(C6) Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	? Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7	7) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (E	38)	FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes	No X Depth (inches):	
Water Table Present? Yes	No X Depth (inches):	
Saturation Present? Yes		Wetland Hydrology Present? Yes No X
Saturation Present? Yes (includes capillary fringe)		Wetland Hydrology Present? Yes No X
	No X Depth (inches):	
(includes capillary fringe)	No X Depth (inches):	
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):	
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):	
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):	
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):	
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):	
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):	
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):	
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	No X Depth (inches):	

Sampling Point: G-U

Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. ostrya virginiana	15	Yes	FACU	
2. fraxinus pennsylvanica	35	Yes	FACW	Number of Dominant Species That Are OBL, FACW, or FAC: 4 (A)
3. prunus serotina	15	Yes	FACU	
4. rhamnus cathartica	15	Yes	FAC	Total Number of Dominant Species Across All Strata: 7 (B)
5.				` ` /
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: <u>57.1%</u> (A/B)
7.				Prevalence Index worksheet:
	80	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15)				OBL species 0 x 1 = 0
1. Lonicera morrowii	20	Yes	FACU	FACW species 35 x 2 = 70
2. Rhamnus cathartica	40	Yes	FAC	FAC species 95 x 3 = 285
3				FACU species 50 x 4 = 200
4				UPL species 0 x 5 = 0
5				Column Totals: 180 (A) 555 (B)
6				Prevalence Index = B/A =3.08
7				Hydrophytic Vegetation Indicators:
	60	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5)				X 2 - Dominance Test is >50%
1. rhamnus cathartica	40	Yes	FAC	3 - Prevalence Index is ≤3.0 ¹
2.				4 - Morphological Adaptations ¹ (Provide supporting
3				data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	40	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size:)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Hydrophytic
3				Vegetation
4				Present?
	:	=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

inches) Color (moist) % 0-10 10YR 3/2 100		<u>%</u> Type ¹	Loc ²	Texture Remarks	
0-10 10YR 3/2 100) 				
				Loamy/Clayey	
Type: C=Concentration, D=Depletion,	 RM=Reduced Matrix, M	S=Masked Sand	d Grains.	² Location: PL=Pore Lining, M=Matrix.	
lydric Soil Indicators:				Indicators for Problematic Hydric Soil	
Histosol (A1)		w Surface (S8) (LRR R,	2 cm Muck (A10) (LRR K, L, MLRA	-
Histic Epipedon (A2)	MLRA 149B)			Coast Prairie Redox (A16) (LRR K,	
Black Histic (A3)		ice (S9) (LRR R			
Hydrogen Sulfide (A4)		ands (S11) (LR		Polyvalue Below Surface (S8) (LRR	K , L)
Stratified Layers (A5)		/lineral (F1) (LR	R K, L)	Thin Dark Surface (S9) (LRR K, L)	
Depleted Below Dark Surface (A11)				Iron-Manganese Masses (F12) (LR	
Thick Dark Surface (A12)	Depleted Matrix	: (F3)		Piedmont Floodplain Soils (F19) (M I	LRA 149
Sandy Mucky Mineral (S1)	Redox Dark Su	rface (F6)		Mesic Spodic (TA6) (MLRA 144A, 1	45, 149
Sandy Gleyed Matrix (S4)	Depleted Dark S	Surface (F7)		Red Parent Material (F21)	
Sandy Redox (S5)	Redox Depress	ions (F8)		Very Shallow Dark Surface (F22)	
Stripped Matrix (S6)	Marl (F10) (LRF	R K, L)		Other (Explain in Remarks)	
Dark Surface (S7)					
ndicators of hydrophytic vegetation and	d wetland hydrology mu	st be present, u	nless dist	irbed or problematic.	
Restrictive Layer (if observed): Type: Hard pan					
Depth (inches): 10				Hydric Soil Present? Yes N	lo X
Remarks:				• • • • • • •	
his data form is revised from Northcen	9			2.0 to include the NRCS Field Indicators of Hydrid	c Soils,
ersion 7.0, 2015 Errata. (http://www.nr	cs.usda.gov/Internet/FS	E_DOCUMENT	S/nrcs14	2p2_051293.docx)	

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)
Project/Site: Massena Green Hydrogen Facility City/County: Massena/St.	Lawrence Sampling Date: 10-6-2022
Applicant/Owner: Air Products	State: NY Sampling Point: W-T-1
Investigator(s): J. Strong Section, Townshi	p, Range: 4.004-1-19 &4.004-1-18
Landform (hillside, terrace, etc.): none Local relief (concave, convex, non	ne): concave Slope %: 0-3
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.958302 Long: -74.	910745 Datum: NAD 1983
	NWI classification:
Are climatic / hydrologic conditions on the site typical for this time of year? Yes	No (If no, explain in Remarks.)
	rcumstances" present? Yes No
	lain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling point locations	s, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area Hydric Soil Present? Yes X No within a Wetland? Wetland Hydrology Present? Yes X No If yes, optional Wetland	Yes X No Site ID: Wetland T
HYDROLOGY	
	ondary Indicators (minimum of two required) Surface Soil Cracks (B6)
	Drainage Patterns (B10)
	Moss Trim Lines (B16)
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
	Crayfish Burrows (C8)
	Saturation Visible on Aerial Imagery (C9)
	Stunted or Stressed Plants (D1)
	Geomorphic Position (D2) Shallow Aquitard (D3)
	Microtopographic Relief (D4)
	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes <u>No X</u> Depth (inches):	
Water Table Present? Yes No X Depth (inches):	
	drology Present? Yes X No
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if availa	adie.
Remarks:	

Sampling Point: W-T-1

<u>Tree Stratum</u> (Plot size: 30x30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Fraxinus pennsylvanica	10	Yes	FACW	
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 5 (A)
3 4				Total Number of Dominant Species Across All Strata: 7 (B)
5				Percent of Dominant Species That Are OBL, FACW, or FAC:71.4% (A/B)
7				Prevalence Index worksheet:
	10	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15x15)				OBL species 10 x 1 = 10
1. Cornus alba	30	Yes	FACW	FACW species 60 x 2 = 120
2. Rhamnus cathartica	15	Yes	FAC	FAC species 15 x 3 = 45
3				FACU species 25 x 4 = 100
4				UPL species x 5 =
5				Column Totals: 110 (A) 275 (B)
6.				Prevalence Index = B/A = 2.50
7.				Hydrophytic Vegetation Indicators:
	45	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5x5)				X 2 - Dominance Test is >50%
1. Eupatorium perfoliatum	20	Yes	FACW	X 3 - Prevalence Index is ≤3.0 ¹
2. Typha angustifolia	10	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5 6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9.				diameter at breast height (DBH), regardless of height.
10 11.				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
11 12.				
12.	30	-Total Cover		Herb – All herbaceous (non-woody) plants, regardless
Weedy Vine Stratum (Distaire) EVE		=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 5x5)	45	Mar	FAOL	Woody vines – All woody vines greater than 3.28 ft in
1. <u>Vitis labrusca</u>	15	Yes	FACU	height.
2. Solanum ptychanthum	10	Yes	FACU	Hydrophytic
3				Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separation of the sep	rate sheet.)			

Profile Desc	ription: (Describe f	to the de	pth needed to docu	ument t	he indica	tor or c	onfirm the absence o	of indicators.)
Depth	Matrix			x Featur				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-18	10YR 3/1	95	2.5YR 4/4	5	С	М	Loamy/Clayey	Prominent redox concentrations
		<u> </u>						
¹ Type: C=Co	oncentration, D=Depl	etion, RN	Reduced Matrix, N	1S=Mas	ked Sanc	l Grains.	² Location: I	DL=Pore Lining, M=Matrix.
Hydric Soil I	ndicators:						Indicators	for Problematic Hydric Soils ³ :
Histosol			Dark Surface (-				uck (A10) (LRR K, L, MLRA 149B)
	ipedon (A2)		Polyvalue Belo		ice (S8) (LRR R,		Prairie Redox (A16) (LRR K, L, R)
Black His			MLRA 149B	,				ucky Peat or Peat (S3) (LRR K, L, R)
	n Sulfide (A4)		Thin Dark Surf					ue Below Surface (S8) (LRR K, L)
	Layers (A5) Below Dark Surface	(11)	High Chroma S	-				ırk Surface (S9) (LRR K, L) nganese Masses (F12) (LRR K, L, R)
	rk Surface (A12)	(ATT)	Loamy Gleyed			、 Κ, Ε)		Ingaliese Masses (F12) (LRR R, E, R) Int Floodplain Soils (F19) (MLRA 149B)
	podic (A17)		Depleted Matri		(12)			rent Material (F21) (outside MLRA 145)
	A 144A, 145, 149B)		X Redox Dark Su		-6)			nallow Dark Surface (F22)
	ucky Mineral (S1)		Depleted Dark	•	,			Explain in Remarks)
Sandy G	leyed Matrix (S4)		Redox Depress	sions (F	8)			
Sandy R	edox (S5)		Marl (F10) (LR	R K, L)			³ Indicat	ors of hydrophytic vegetation and
Stripped	Matrix (S6)		Red Parent Ma	terial (F	21) (MLF	RA 145)	wetla	nd hydrology must be present,
							unles	s disturbed or problematic.
_	ayer (if observed):							
Depth (in	iches):						Hydric Soil Prese	ent? Yes <u>X</u> No
Remarks:								

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)		
Project/Site: Massena Green Hydrogen Facility City/County: Massena/St.	Lawrence Sampling Date: 10-6-2022		
Applicant/Owner: Air Products	State: NY Sampling Point: UP-T-1		
Investigator(s): J. Strong Section, Townshi	p, Range: 4.004-1-19 &4.004-1-18		
Landform (hillside, terrace, etc.): none Local relief (concave, convex, no	ne): convex Slope %: 3-8		
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: -74.910458 44.958269 Long: -74.9	· · ·		
	NWI classification:		
	No (If no, explain in Remarks.)		
	rcumstances" present? Yes No		
	lain any answers in Remarks.)		
SUMMARY OF FINDINGS – Attach site map showing sampling point locations	s, transects, important features, etc.		
Hydrophytic Vegetation Present? Yes No X Is the Sampled Area Hydric Soil Present? Yes No X within a Wetland? Wetland Hydrology Present? Yes No X If yes, optional Wetland	Yes No_X Site ID:		
HYDROLOGY			
· · · · ·	ondary Indicators (minimum of two required)		
	Surface Soil Cracks (B6) Drainage Patterns (B10)		
	Moss Trim Lines (B16)		
	Dry-Season Water Table (C2)		
	Crayfish Burrows (C8)		
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3)	Saturation Visible on Aerial Imagery (C9)		
	Stunted or Stressed Plants (D1)		
	Geomorphic Position (D2)		
	Shallow Aquitard (D3) Microtopographic Relief (D4)		
	FAC-Neutral Test (D5)		
Field Observations:	· · ·		
Surface Water Present? Yes <u>No X</u> Depth (inches):			
Water Table Present? Yes No X Depth (inches):			
	drology Present? Yes <u>No X</u>		
(includes capillary fringe)			
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if availa	adie:		
Remarks:			

Sampling Point: UP-T-1

	Absolute	Dominant	Indicator			
<u>Tree Stratum</u> (Plot size: <u>30x30</u>)	% Cover	Species?	Status	Dominance Test worksheet:		
1. Fraxinus pennsylvanica	15	Yes	FACW	Number of Dominant Species		
2. Acer saccharum	20	Yes	FACU	That Are OBL, FACW, or FAC:(A)		
3. <u>Betula papyrifera</u>	15	Yes	FACU	Total Number of Dominant		
4. Acer saccharinum	10	No	FACW	Species Across All Strata: 5 (B)		
5				Percent of Dominant Species		
6				That Are OBL, FACW, or FAC: 40.0% (A/B)		
7				Prevalence Index worksheet:		
	60	=Total Cover		Total % Cover of: Multiply by:		
Sapling/Shrub Stratum (Plot size: 15x15)				OBL species 0 x 1 = 0		
1. Rhamnus cathartica	55	Yes	FAC	FACW species 25 x 2 = 50		
2				FAC species 55 x 3 = 165		
3				FACU species 35 x 4 = 140		
4				UPL species 0 x 5 = 0		
5				Column Totals: 115 (A) 355 (B)		
6				Prevalence Index = B/A = 3.09		
7.				Hydrophytic Vegetation Indicators:		
	55	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation		
Herb Stratum (Plot size: 5x5)				2 - Dominance Test is >50%		
1. Dryopteris sp	20	Yes		 3 - Prevalence Index is ≤3.0 ¹		
2.				4 - Morphological Adaptations ¹ (Provide supporting		
3.				data in Remarks or on a separate sheet)		
				Problematic Hydrophytic Vegetation ¹ (Explain)		
				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.		
7				Definitions of Vegetation Strata:		
Q				Definitions of Vegetation Strata.		
o 9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.		
				diameter at breast neight (DBH), regardless of height.		
10				Sapling/shrub – Woody plants less than 3 in. DBH		
11				and greater than or equal to 3.28 ft (1 m) tall.		
12				Herb – All herbaceous (non-woody) plants, regardless		
	20	=Total Cover		of size, and woody plants less than 3.28 ft tall.		
Woody Vine Stratum (Plot size: 5x5)				Woody vines – All woody vines greater than 3.28 ft in		
1				height.		
2.				Hydrophytic		
3				Vegetation		
4.				Present? Yes <u>No X</u>		
		=Total Cover				
Remarks: (Include photo numbers here or on a separation	rate sheet.)					

Depth (inches) 0-13			oth needed to docu Redo	x Featu	°05					
	Matrix Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Rema	Remarks	
0-13	· · · · ·									
0 10	10YR 3/3	100					Loamy/Clayey			
13-18	10YR 4/4	100								
		<u> </u>								
¹ Type: C=Con	centration, D=Depl	etion, RM=	=Reduced Matrix, N	1S=Mas	ked Sand	Grains.	² Location: PL=	Pore Lining, M=M	atrix.	
Hydric Soil In	dicators:						Indicators for	Problematic Hyd	ric Soils ³ :	
Histosol (A	41)	_	Dark Surface (S7)			2 cm Muck	(A10) (LRR K, L ,	MLRA 149B)	
Histic Epip	oedon (A2)	-	Polyvalue Belo	w Surfa	ce (S8) (I	_RR R,	Coast Prair	ie Redox (A16) (L	.RR K, L, R)	
Black Hist			MLRA 149B	,				y Peat or Peat (S3		
Hydrogen	Sulfide (A4)	-	Thin Dark Surf					Below Surface (S8		
	_ayers (A5)	-	High Chroma S					Surface (S9) (LRR	-	
	Below Dark Surface	e (A11)	Loamy Mucky I			R K, L)		nese Masses (F1)		
	k Surface (A12)	-	Loamy Gleyed		F2)			loodplain Soils (F		
Mesic Spo		-	Depleted Matri					Material (F21) (o		
	144A, 145, 149B)	-	Redox Dark Su					w Dark Surface (F	-22)	
	cky Mineral (S1)	-	Depleted Dark				Other (Expl	ain in Remarks)		
	eyed Matrix (S4)	-	Redox Depress	•	0)		³ Indicators	of hydrophytic you	notation and	
	Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145		PA 145)	³ Indicators of hydrophytic vegetation and wetland hydrology must be present,						
		-		ateriai (i		(A 143)	unless disturbed or problematic.			
Restrictive La	yer (if observed):								natio.	
	. .									
							Hydric Soil Present?	Yes	<u>No X</u>	
Remarks:	hes):									

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)				
Project/Site: Massena Green Hydrogen Facility City/County: Massena/St.	Lawrence Sampling Date: 10-6-2022				
Applicant/Owner: Air Products	State: NY Sampling Point: W-U-1				
Investigator(s): J. Strong Section, Townshi	 ip, Range: 4.004-1-19 &4.004-1-18				
Landform (hillside, terrace, etc.): none Local relief (concave, convex, no					
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.960881 Long: -74.					
	NWI classification:				
	No (If no, explain in Remarks.)				
—	ircumstances" present? Yes No				
	lain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map showing sampling point locations	s, transects, important features, etc.				
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area within a Wetland? Hydric Soil Present? Yes X No within a Wetland? Wetland Hydrology Present? Yes X No If yes, optional Wetland Remarks: (Explain alternative procedures here or in a separate report.) If yes, optional Wetland If yes, optional Wetland	Yes X No Site ID: Wetland U				
HYDROLOGY					
	ondary Indicators (minimum of two required)				
	Surface Soil Cracks (B6)				
	Drainage Patterns (B10)				
	Moss Trim Lines (B16) Dry-Season Water Table (C2)				
	Crayfish Burrows (C8)				
Sediment Deposits (B2) X Oxidized Rhizospheres on Living Roots (C3) X	X Saturation Visible on Aerial Imagery (C9)				
	Stunted or Stressed Plants (D1)				
	Geomorphic Position (D2)				
	Shallow Aquitard (D3) Microtopographic Relief (D4)				
	FAC-Neutral Test (D5)				
Field Observations:	\ - \				
Surface Water Present? Yes No _X _ Depth (inches):					
Water Table Present? Yes No X Depth (inches):					
	drology Present? Yes X No				
(includes capillary fringe)					
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if availa	adie.				
Remarks:					

Sampling Point: W-U-1

Tree Stratum (Plot size: 30x30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Acer saccharinum	25	Yes	FACW	Number of Dominant Species
2. Populus deltoides	20	Yes	FAC	That Are OBL, FACW, or FAC: 9 (A)
3 4				Total Number of Dominant Species Across All Strata:10(B)
56				Percent of Dominant Species That Are OBL, FACW, or FAC: <u>90.0%</u> (A/
7				Prevalence Index worksheet:
	45	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15x15)			OBL species X1 = 35
1. Cornus amomum	25	Yes	FACW	FACW species 60 x 2 = 120
2. Cephalanthus occidentalis	15	Yes	OBL	FAC species x 3 = 60
3				FACU species 10 x 4 = 40
4				UPL species x 5 =
5				Column Totals: 125 (A) 255 (
6		. . <u></u>		Prevalence Index = B/A =2.04
7				Hydrophytic Vegetation Indicators:
	40	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5x5)				X_2 - Dominance Test is >50%
1. Onoclea sensibilis	10	Yes	FACW	X_3 - Prevalence Index is ≤3.0 ¹
2. Typha angustifolia	5	Yes	OBL	4 - Morphological Adaptations ¹ (Provide support
3. Persicaria amphibia	5	Yes	OBL	data in Remarks or on a separate sheet)
4. Scirpus cyperinus	5	Yes	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
5. <u>Caltha palustris</u> 6.	5	Yes	¹ Indicators of hydric soil and wetland hydrology mus be present, unless disturbed or problematic.	
7.				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of heigh
10 11.				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12.		. <u> </u>		
	30	=Total Cover		Herb – All herbaceous (non-woody) plants, regardle of size, and woody plants less than 3.28 ft tall.
<u>Woody Vine Stratum</u> (Plot size: <u>5x5</u> 1. <u>Vitis labrusca</u>	_) <u>10</u>	Yes	FACU	Woody vines – All woody vines greater than 3.28 ft height.
2				
3.				Hydrophytic Vegetation
•.				Present? Yes X No
4.	_			

Profile Desc	ription: (Describe	to the de	pth needed to doc	ument ti	he indica	ator or c	onfirm the absence o	of indicators.)
Depth	Matrix		Redo	x Featur	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-8	10YR 3/1	100					Loamy/Clayey	
8-18	10YR 4/1	90	5YR 5/6	10	C	M	Loamy/Clayey	Prominent redox concentrations
· · · ·	oncentration, D=Depl	etion, RM	=Reduced Matrix, N	/IS=Masl	ked Sand	l Grains.		PL=Pore Lining, M=Matrix.
Hydric Soil								or Problematic Hydric Soils ³ :
Histosol			Dark Surface (-				uck (A10) (LRR K, L, MLRA 149B)
	oipedon (A2)		Polyvalue Belo		ce (S8) (LRR R,		Prairie Redox (A16) (LRR K, L, R)
Black Hi	()		MLRA 149B	·				ucky Peat or Peat (S3) (LRR K, L, R)
Hydroge	n Sulfide (A4)		Thin Dark Surf	ace (S9)) (LRR R	, MLRA	149B) Polyvalu	ue Below Surface (S8) (LRR K, L)
Stratified	Layers (A5)		High Chroma S	Sands (S	11) (LRF	R K, L)	Thin Da	rk Surface (S9) (LRR K, L)
X Depleted	Below Dark Surface	(A11)	Loamy Mucky	Mineral	(F1) (LR	R K, L)	Iron-Mai	nganese Masses (F12) (LRR K, L, R)
	ark Surface (A12)	. ,	Loamy Gleyed					nt Floodplain Soils (F19) (MLRA 149B)
	podic (A17)		X Depleted Matri		,			rent Material (F21) (outside MLRA 145)
	A 144A, 145, 149B)		Redox Dark Su		6)			allow Dark Surface (F22)
	lucky Mineral (S1)		Depleted Dark					Explain in Remarks)
	Gleyed Matrix (S4)		Redox Depress					
	ledox (S5)		Marl (F10) (LR)		³ Indicate	ors of hydrophytic vegetation and
Stripped	Matrix (S6)		Red Parent Ma	ateriai (F.	2 1) (IVILF	(A 145)		nd hydrology must be present, s disturbed or problematic.
	Layer (if observed):							
	nches):						Hydric Soil Prese	nt? Yes <u>X</u> No
Remarks:								

U.S. Army WETLAND DETERMINATION DATA See ERDC/EL TR-12-1; the	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)						
Project/Site: Massena Green Hydrogen Fac	ility	City/County: Massena/St	. Lawrence Sampling Date: 10-6-2022				
Applicant/Owner: Air Products			State: NY Sampling Point: UP-U-1				
Investigator(s): J. Strong		Section, Townsh	nip, Range: 4.004-1-19 &4.004-1-18				
Landform (hillside, terrace, etc.): none	Local re	elief (concave, convex, no	one): convex Slope %: 0-3				
Subregion (LRR or MLRA): LRR R, MLRA 1			.907744 Datum: NAD 1983				
Soil Map Unit Name: Rt- Runeberg soils, 0 to		2011g	NWI classification:				
· · · · · · · · · · · · · · · · · · ·		Vaa					
Are climatic / hydrologic conditions on the site			No (If no, explain in Remarks.)				
Are Vegetation, Soil, or Hydro			Circumstances" present? Yes No				
Are Vegetation, Soil, or Hydro			plain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach	site map showing sam	pling point location	is, transects, important features, etc.				
Hydrophytic Vegetation Present? Hydric Soil Present?	Yes No X Yes No X	Is the Sampled Area within a Wetland?	Yes NoX				
Wetland Hydrology Present?	Yes No X	If yes, optional Wetland					
Remarks: (Explain alternative procedures he	ere of iff a separate report.)						
HYDROLOGY							
Wetland Hydrology Indicators:		Sec	condary Indicators (minimum of two required)				
Primary Indicators (minimum of one is require	ed; check all that apply)		Surface Soil Cracks (B6)				
Surface Water (A1)	Water-Stained Leaves (B		Drainage Patterns (B10)				
High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim Lines (B16)				
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Table (C2)				
Water Marks (B1) Sediment Deposits (B2)	Hydrogen Sulfide Odor (C Oxidized Rhizospheres o		Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)				
Drift Deposits (B3)	Presence of Reduced Iro	• • • •	Stunted or Stressed Plants (D1)				
Algal Mat or Crust (B4)	Recent Iron Reduction in		Geomorphic Position (D2)				
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)				
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark	(S)	Microtopographic Relief (D4)				
Sparsely Vegetated Concave Surface (B	8)		FAC-Neutral Test (D5)				
Field Observations:							
Surface Water Present? Yes	No X Depth (inches):						
Water Table Present? Yes Saturation Present? Yes	No X Depth (inches): No X Depth (inches):		rdrala m. Pressut? Ves No. V				
Saturation Present? Yes (includes capillary fringe)	10^{10} Depth (inches).	Wettand Hy	vdrology Present? Yes <u>No X</u>				
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos, prev	vious inspections), if avail	lable:				
Remarks:							

Sampling Point: UP-U-1

	Absolute	Dominant	Indicator	
<u>Tree Stratum</u> (Plot size: <u>30x30</u>)	% Cover	Species?	Status	Dominance Test worksheet:
1. Fraxinus pennsylvanica	10	No	FACW	Number of Dominant Species
2. Acer saccharum	10	No	FACU	That Are OBL, FACW, or FAC: 2 (A)
3. Quercus palustris	15	Yes	FACW	Total Number of Dominant
4. Populus tremuloides	15	Yes	FACU	Species Across All Strata: 5 (B)
5. <u>Betula papyrifera</u> 6.	25	Yes	FACU	Percent of Dominant Species That Are OBL, FACW, or FAC: 40.0% (A/B)
7				Prevalence Index worksheet:
/	75	=Total Cover		Total % Cover of: Multiply by:
<u>Sapling/Shrub Stratum</u> (Plot size: 15x15)	- 15			$\begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\$
1. Rhamnus cathartica	70	Yes	FAC	FACW species $25 \times 2 = 50$
	70	res	FAC	
2				FAC species 70 x 3 = 210
3				FACU species 50 x 4 = 200
4				UPL species x 5 =
5				Column Totals: 145 (A) 460 (B)
6				Prevalence Index = B/A =
7				Hydrophytic Vegetation Indicators:
	70	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5x5)				2 - Dominance Test is >50%
1. Dryopteris sp	10	Yes		3 - Prevalence Index is ≤3.0 ¹
2				4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
o				Definitions of Vegetation Strata:
•				_
o 9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
9 10.		. <u> </u>		diameter at breast neight (DDF), regardless of height.
· · · · · · · · · · · · · · · · · · ·				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	10	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 5x5)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Hydrophytic
3				Vegetation
4				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			

Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, MLRA 149B)Coast Prairie 5 cm MuckyBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue BelowStratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark Surface (A11)Depleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Expla 3 Indicators of wetland hyStripped Matrix (S6)Red Parent Material (F21) (MLRA 145)3 Indicators of wetland hy		Remarks
10-18 10YR 4/4 100 10-11 10YR 4/4 100 10-11 10YR 4/4 10YR 4/4 10-11 10YR 4/4 10YR 4/4 11 10YR 4/4 10YR 4/4 11 10YYA 149B 10YYA 149B		
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=P Hydric Soil Indicators: Indicators for P Histosol (A1) Dark Surface (S7) 2 cm Muck (Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Coast Prairi Dark Surface (S9) (LRR R, MLRA 149B) Black Histic (A3) MLRA 149B) 5 cm Muck (Hydrogen Suffde (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Polyvalue Blow Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (A12) Mesic Spodic (A17) Depleted Matrix (F3) Red Parent (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Exple Sandy Redox (S5) Mari (F10) (LRR K, L) ³ Indicators or Sandy Redox (S5) Mari (F10) (LRR K, L) ³ Indicators or Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland h		
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=P Hydric Soil Indicators: Indicators for P Histosol (A1) Dark Surface (S7) 2 cm Muck (Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Coast Prairi Dark Surface (S9) (LRR R, MLRA 149B) Black Histic (A3) MLRA 149B) 5 cm Muck (Hydrogen Suffde (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Polyvalue Blow Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (A12) Mesic Spodic (A17) Depleted Matrix (F3) Red Parent (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Exple Sandy Redox (S5) Mari (F10) (LRR K, L) ³ Indicators or Sandy Redox (S5) Mari (F10) (LRR K, L) ³ Indicators or Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland h	 	
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf	<u> </u>	
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Delyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR K, L)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transition of		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S8) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the tr		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf		
Hydric Soil Indicators:Indicators for PHistosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR R, MLRA 149B)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark SurfaceDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Explation of the transform of the transf		
Histosol (A1)Dark Surface (S7)2 cm Muck (Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R,Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (S9) (LRR K, L)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark Surface (A11)Depleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Expland)Sandy Redox (S5)Marl (F10) (LRR K, L)3 ¹ Indicators ofStripped Matrix (S6)Red Parent Material (F21) (MLRA 145)wetland hy unless dist		
Histic Epipedon (A2)Polyvalue Below Surface (S8) (LRR R, MLRA 149B)Coast PrairieBlack Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue Below Surface (A19)Stratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark Surface (A11)Depleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Expla Sandy Redox (S5)Stripped Matrix (S6)Red Parent Material (F21) (MLRA 1445)3 Indicators of wetland hy unless dis		RR K, L, MLRA 149B)
Black Histic (A3)MLRA 149B)5 cm MuckyHydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue BitStratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark Surface BitDepleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Expland)Sandy Redox (S5)Marl (F10) (LRR K, L)3Indicators of wetland hereStripped Matrix (S6)Red Parent Material (F21) (MLRA 145)wetland here		(A16) (LRR K, L, R)
Hydrogen Sulfide (A4)Thin Dark Surface (S9) (LRR R, MLRA 149B)Polyvalue BaStratified Layers (A5)High Chroma Sands (S11) (LRR K, L)Thin Dark Surface (A12)Depleted Below Dark Surface (A12)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Expland)Sandy Redox (S5)Marl (F10) (LRR K, L)3Indicators ofStripped Matrix (S6)Red Parent Material (F21) (MLRA 145)wetland hour muless dis		Peat (S3) (LRR K, L, R)
Depleted Below Dark Surface (A11)Loamy Mucky Mineral (F1) (LRR K, L)Iron-MangarThick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Expland)Sandy Redox (S5)Marl (F10) (LRR K, L)3Indicators ofStripped Matrix (S6)Red Parent Material (F21) (MLRA 145)wetland hy	-	face (S8) (LRR K, L)
Thick Dark Surface (A12)Loamy Gleyed Matrix (F2)Piedmont FIMesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Expland)Sandy Gleyed Matrix (S4)Redox Depressions (F8)3Indicators ofSandy Redox (S5)Marl (F10) (LRR K, L)3Indicators ofStripped Matrix (S6)Red Parent Material (F21) (MLRA 145)wetland here	Dark Surface (S9	
Mesic Spodic (A17)Depleted Matrix (F3)Red Parent(MLRA 144A, 145, 149B)Redox Dark Surface (F6)Very ShallowSandy Mucky Mineral (S1)Depleted Dark Surface (F7)Other (Expland)Sandy Gleyed Matrix (S4)Redox Depressions (F8)3Indicators ofSandy Redox (S5)Marl (F10) (LRR K, L)3Indicators ofStripped Matrix (S6)Red Parent Material (F21) (MLRA 145)wetland here	/anganese Mass	ses (F12) (LRR K, L, R)
(MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Expland) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Marl (F10) (LRR K, L) ³ Indicators of wetland heta Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland heta unless dis		Soils (F19) (MLRA 149B
Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explanding the constraint of the con		(F21) (outside MLRA 14
Sandy Gleyed Matrix (S4) Redox Depressions (F8) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland hy unless dis	Shallow Dark Su	
Sandy Redox (S5) Marl (F10) (LRR K, L) ³ Indicators of the second	· (Explain in Rem	narks)
Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland hunless dis	ators of hydroph	hytic vegetation and
unless dis		must be present,
Restrictive Layer (if observed):	ess disturbed or	
		· ·
Туре:		
Depth (inches): Hydric Soil Present?	sent? Y	res NoX
Remarks:		

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)				
Project/Site: Massena Green Hydrogen Facility City/County: Massena/St.	Lawrence Sampling Date: 10-6-2022				
Applicant/Owner: Air Products	State: NY Sampling Point: W-V-1				
Investigator(s): J. Strong Section, Townsh	ip, Range: 4.004-1-19 &4.004-1-18				
Landform (hillside, terrace, etc.): none Local relief (concave, convex, no	ne): concave Slope %: 0-3				
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.959490 Long: -74.					
	NWI classification:				
Are climatic / hydrologic conditions on the site typical for this time of year? Yes	No (If no, explain in Remarks.)				
	ircumstances" present? Yes No				
	plain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map showing sampling point location	s, transects, important features, etc.				
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area Hydric Soil Present? Yes X No within a Wetland? Wetland Hydrology Present? Yes X No If yes, optional Wetland	Yes X No Site ID: Wetland U				
HYDROLOGY					
	ondary Indicators (minimum of two required)				
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)				
	Drainage Patterns (B10) Moss Trim Lines (B16)				
	Dry-Season Water Table (C2)				
	Crayfish Burrows (C8)				
	Saturation Visible on Aerial Imagery (C9)				
	Stunted or Stressed Plants (D1)				
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Iron Deposits (B5) Thin Muck Surface (C7)	Geomorphic Position (D2)				
	Shallow Aquitard (D3) Microtopographic Relief (D4)				
	FAC-Neutral Test (D5)				
Field Observations:					
Surface Water Present? Yes No X Depth (inches):					
Water Table Present? Yes No X Depth (inches):					
	drology Present? Yes X No				
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if availa	abla				
Describe Recorded Data (stream gauge, morntoring weil, aenai protos, previous inspections), il avait	avie.				
Remarks:					

Sampling Point: W-V-1

	Absolute	Dominant	Indicator	Demission Technologia
<u>Tree Stratum</u> (Plot size: <u>30x30</u>)	% Cover	Species?	Status	Dominance Test worksheet:
1. Fraxinus pennsylvanica	30	Yes	FACW	Number of Dominant Species
2. Ulmus americana	15	Yes	FACW	That Are OBL, FACW, or FAC:(A)
3. Tilia americana	15	Yes	FACU	Total Number of Dominant
4. Quercus rubra	15	Yes	FACU	Species Across All Strata: 7 (B)
5 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 57.1% (A/B)
7.				Prevalence Index worksheet:
··	75	=Total Cover		Total % Cover of: Multiply by:
<u>Sapling/Shrub Stratum</u> (Plot size: 15x15)				$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1. Rhamnus cathartica	10	Yes	FAC	FACW species 90 $\times 2 = 180$
2.		100		FAC species $10 \times 3 = 30$
				FACU species $40 \times 4 = 160$
3 4.				$\begin{array}{c} \text{PACO Species} \\ \text{UPL species} \\ 0 \\ \text{x5} = 0 \\ \end{array}$
5				
5				Column Totals: 140 (A) 370 (B)
6				Prevalence Index = B/A = 2.64
7				Hydrophytic Vegetation Indicators:
	10	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
<u>Herb Stratum</u> (Plot size: <u>5x5</u>)				X 2 - Dominance Test is >50%
1. Onoclea sensibilis	45	Yes	FACW	X_3 - Prevalence Index is ≤3.0 ¹
2				4 - Morphological Adaptations ¹ (Provide supporting
3				data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5		.		¹ Indicators of hydric soil and wetland hydrology must
6		<u></u>		be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8.				Tree – Woody plants 3 in. (7.6 cm) or more in
9.				diameter at breast height (DBH), regardless of height.
10.				Conting/objects Woody plants loss than 3 in DBH
11.				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12.				
	45	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 5x5)				
1. Vitis labrusca	10	Yes	FACU	Woody vines – All woody vines greater than 3.28 ft in height.
2				hogh
3.				Hydrophytic
				Vegetation Present? Yes X No
4.	10	=Total Cover		Present? Yes X No
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

	cription: (Describe	to the de				ator or c	onfirm the absenc	e of indicato	ors.)	
Depth	Matrix			x Featur		. 2				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	3
0-10	10YR 3/2	100					Loamy/Clayey			
10-18	2.5Y 5/1	97	5YR 4/6	3	C	M	Loamy/Clayey	Promi	nent redox coi	ncentrations
								_		
								-		
								_		
								-		
1										
	oncentration, D=Depl	etion, RM	=Reduced Matrix, N	/IS=Masl	ked Sand	d Grains.			ning, M=Matri	
Hydric Soil			Daula Osufa an ((07)					matic Hydric	
Histosol			Dark Surface (Polyvalue Belo		co (S8) ((LRR K, L, MI	
Black Hi	bipedon (A2)		Polyvalue Belo		ce (30) (LKK K,			ox (A16) (LRR or Peat (S3) (I	
	n Sulfide (A4)		Thin Dark Surf	'		MIRA		-	Surface (S8) (I	-
	Layers (A5)		High Chroma S						(S9) (LRR K,	-
	Below Dark Surface	e (A11)	Loamy Mucky	-						 LRR K, L, R)
	ark Surface (A12)	. ,	Loamy Gleyed					-		(MLRA 149B)
Mesic S	podic (A17)		X Depleted Matri	ix (F3)			Red	Parent Materi	ial (F21) (outs	ide MLRA 145)
(MLR	A 144A, 145, 149B)		Redox Dark Su	urface (F	6)		Very	Shallow Dark	s Surface (F22	2)
	lucky Mineral (S1)		Depleted Dark				Othe	⁻ (Explain in F	Remarks)	
	leyed Matrix (S4)		Redox Depres	-	8)		2			
	edox (S5)		Marl (F10) (LR					-	ophytic vegeta	
Stripped	Matrix (S6)		Red Parent Ma	aterial (F	21) (MLI	RA 145)			gy must be pro	
Restrictive	_ayer (if observed):						uni I	ess disturbed	d or problemat	IC.
	Layer (il observeu).									
							Hydric Soil Pre	sont?	Voc X	No
	nches):						Hyunc Son Fre	Sent:	Yes X	NO
Remarks:										

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)				
Project/Site: Massena Green Hydrogen Facility City/County: Massena/St	t. Lawrence Sampling Date: 10-5-2022				
Applicant/Owner: Air Products	State: NY Sampling Point: UP-V-1				
Investigator(s): J. Strong Section, Townsh	nip, Range: 4.004-1-19 &4.004-1-18				
Landform (hillside, terrace, etc.): none Local relief (concave, convex, no	one): convex Slope %: 3-8				
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.959324 Long: -74					
Soil Map Unit Name: Rt- Runeberg soils, 0 to 3 percent slopes	NWI classification:				
	No (If no, explain in Remarks.)				
	Circumstances" present? Yes No				
	plain any answers in Remarks.)				
SUMMARY OF FINDINGS – Attach site map showing sampling point location	ns, transects, important features, etc.				
Hydrophytic Vegetation Present? Yes No X Is the Sampled Area Hydric Soil Present? Yes No X within a Wetland? Wetland Hydrology Present? Yes No X If yes, optional Wetland	Yes No_X d Site ID:				
HYDROLOGY					
	condary Indicators (minimum of two required)				
Primary Indicators (minimum of one is required; check all that apply) Surface Water (A1) Water-Stained Leaves (B9)	Surface Soil Cracks (B6) Drainage Patterns (B10)				
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)				
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)				
Water Marks (B1) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)				
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3)	Saturation Visible on Aerial Imagery (C9)				
Drift Deposits (B3) Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1) Geomorphic Position (D2)				
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)				
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Microtopographic Relief (D4)				
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)				
Field Observations:	_				
Surface Water Present? Yes No X Depth (inches):					
Water Table Present? Yes No X Depth (inches):					
	ydrology Present? Yes No X				
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if avai	lable.				
Remarks:					

Sampling Point: UP-V-1

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30x30)	% Cover	Species?	Status	Dominance Test worksheet:
1. Fraxinus pennsylvanica	10	No	FACW	Number of Dominant Species
2. Acer saccharinum	20	Yes	FACW	That Are OBL, FACW, or FAC: 2 (A)
3. Quercus palustris	10	No	FACW	Total Number of Dominant
4. Populus tremuloides	35	Yes	FACU	Species Across All Strata: 5 (B)
5. <u>Betula papyrifera</u> 6.	20	Yes	FACU	Percent of Dominant Species That Are OBL, FACW, or FAC: 40.0% (A/B)
7.				Prevalence Index worksheet:
	95	=Total Cover		Total % Cover of: Multiply by:
<u>Sapling/Shrub Stratum</u> (Plot size: 15x15)				OBL species 0 x 1 = 0
1. Rhamnus cathartica	60	Yes	FAC	FACW species 40 x 2 = 80
2.				FAC species 60 x 3 = 180
3.				FACU species 55 x 4 = 220
4				UPL species $0 \times 5 = 0$
4 5.				Column Totals: 155 (A) 480 (B)
6				$\frac{1}{1} \frac{1}{1} \frac{1}$
7.			·	Hydrophytic Vegetation Indicators:
/:	60	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Harb Stratum (Diataiza: EvE)	00			
Herb Stratum (Plot size: 5x5)	25	Vee		2 - Dominance Test is >50%
1. Dryopteris sp	25	Yes		3 - Prevalence Index is ≤3.0 ¹
2				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5 6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
o 7.				Definitions of Vegetation Strata:
8.				
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	25	=Total Cover		of size, and woody plants less than 3.28 ft tall.
<u>Woody Vine Stratum</u> (Plot size: <u>5x5</u>)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				Hydrophytic
3				Vegetation
4.				Present? Yes <u>No X</u>
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	rate sheet.)			

	cription: (Describe	to the de				ator or co	onfirm the absenc	e of indica	tors.)	
Depth	Matrix			x Featu						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rema	arks
0-12	10YR 3/3	100					Loamy/Clayey			
12-18	10YR 4/4	100								
					·					
					·					
					·					
								_		
					·			_		
					·					
	oncentration, D=Dep	otion DM	-Poducod Matrix	19-14	kod Sara	Graine	² 1 continu		Lining, M=Ma	otriv
Hydric Soil		etion, Rivi		10-Ivias	keu Sand	i Grains.			ematic Hydi	
Histosol			Dark Surface (S7)					-	MLRA 149B)
	oipedon (A2)		Polyvalue Belo	-	ace (S8) (LRR R,			dox (A16) (L	
	istic (A3)		 MLRA 149B		. , .	,				B) (LRR K, L, R)
	en Sulfide (A4)		Thin Dark Surf	ace (S9) (LRR R	, MLRA [·]	149B) Polyv	alue Below	Surface (S8) (LRR K, L)
Stratified	d Layers (A5)		High Chroma S	Sands (S	511) (LRI	R K, L)	Thin I	Dark Surfac	æ (S9) (LRR	K, L)
Depleted	d Below Dark Surface	e (A11)	Loamy Mucky	Mineral	(F1) (LR	R K, L)	Iron-M	Manganese	Masses (F12	2) (LRR K, L, R)
	ark Surface (A12)		Loamy Gleyed		(F2)				-	19) (MLRA 149B)
	podic (A17)		Depleted Matri							utside MLRA 145
-	RA 144A, 145, 149B)		Redox Dark Su						rk Surface (F	-22)
	Aucky Mineral (S1)		Depleted Dark		. ,		Other	r (Explain in	Remarks)	
	Gleyed Matrix (S4) Redox (S5)		Redox Depress Marl (F10) (LR	•	,		³ Indic	ators of hy	drophytic veg	netation and
	Matrix (S6)		Red Parent Ma			RA 145)		-	logy must be	
					2.)(ed or probler	
Restrictive	Layer (if observed):									
Type:										
-	nches):						Hydric Soil Pre	sent?	Yes	<u>No X</u>
Remarks:	·						-			
rtomanto.										

U.S. Army Corps of WETLAND DETERMINATION DATA SHEET See ERDC/EL TR-12-1; the propor	- Northcentral and Northe	•	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)		
Project/Site: Massena Green Hydrogen Facility	City/Cour	nty: Massena/St	Lawrence Sampling Date: 10-5-2022		
Applicant/Owner: Air Products			State:NYSampling Point:W-W-1		
Investigator(s): J. Strong	:	Section, Townsh	ip, Range: 4.004-1-19 &4.004-1-18		
Landform (hillside, terrace, etc.): none	Local relief (cond	cave, convex, no	ne): concave Slope %: 3-8		
Subregion (LRR or MLRA): LRR R, MLRA 142 La	t: 44.962052	Long: -74.	907759 Datum: NAD 1983		
Soil Map Unit Name: HnB -Hogansburg loam, 3 to 8 p			NWI classification:		
Are climatic / hydrologic conditions on the site typical for		Yes	No (If no, explain in Remarks.)		
Are Vegetation, Soil, or Hydrology	-		ircumstances" present? Yes No		
Are Vegetation, Soil, or Hydrology			plain any answers in Remarks.)		
SUMMARY OF FINDINGS – Attach site ma			-		
Hydrophytic Vegetation Present? Yes X Hydric Soil Present? Yes X Wetland Hydrology Present? Yes X Remarks: (Explain alternative procedures here or in alternalternalternative procedures here or in alternative pr	No within No If yes, o	Sampled Area a Wetland? optional Wetland	Yes X No Site ID: Wetland W		
HYDROLOGY					
Wetland Hydrology Indicators:		Sec	ondary Indicators (minimum of two required)		
Primary Indicators (minimum of one is required; check	all that apply)		Surface Soil Cracks (B6)		
Surface Water (A1)Wa	ter-Stained Leaves (B9)		Drainage Patterns (B10)		
	uatic Fauna (B13)		Moss Trim Lines (B16)		
	rl Deposits (B15)		Dry-Season Water Table (C2)		
	drogen Sulfide Odor (C1) dized Rhizospheres on Living F	Poots (C3)	Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)		
	sence of Reduced Iron (C4)		Stunted or Stressed Plants (D1)		
	cent Iron Reduction in Tilled So		Geomorphic Position (D2)		
Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3)					
Inundation Visible on Aerial Imagery (B7) Oth	er (Explain in Remarks)		Microtopographic Relief (D4)		
Sparsely Vegetated Concave Surface (B8)		<u>X</u>	FAC-Neutral Test (D5)		
Field Observations:					
Surface Water Present? Yes No X					
Water Table Present? Yes No X Saturation Present? Yes No X		Wotland Hy	drology Present? Yes X No		
(includes capillary fringe)	Deptil (inches).	wettand try			
Describe Recorded Data (stream gauge, monitoring w	ell, aerial photos, previous insp	ections), if avail	able:		
Remarks:					

Г

Т

Sampling Point: W-W-1

	Absolute	Dominant	Indicator	Demission Texture de la de
Tree Stratum (Plot size: 30x30)	% Cover	Species?	Status	Dominance Test worksheet:
1. Fraxinus pennsylvanica	35	Yes	FACW	Number of Dominant Species
2. <u>Ulmus americana</u>	15	Yes	FACW	That Are OBL, FACW, or FAC:(A)
3				Total Number of Dominant
4.				Species Across All Strata: 5 (B)
5				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 80.0% (A/B)
7.				Prevalence Index worksheet:
	50	=Total Cover		Total % Cover of: Multiply by:
<u>Sapling/Shrub Stratum</u> (Plot size: 15x15)				OBL species 0 x 1 = 0
1. Rhamnus cathartica	50	Yes	FAC	FACW species 100 x 2 = 200
2. Lonicera morrowii	15	Yes	FACU	FAC species 50 x 3 = 150
3.				FACU species $15 \times 4 = 60$
4.				$\frac{1}{100} \frac{1}{100} \frac{1}$
5				Column Totals: 165 (A) 410 (B)
6				Prevalence Index = B/A =
7				Hydrophytic Vegetation Indicators:
	65	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5x5)				X 2 - Dominance Test is >50%
1. Onoclea sensibilis	50	Yes	FACW	X_3 - Prevalence Index is ≤3.0 ¹
2.				4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12.				Herb – All herbaceous (non-woody) plants, regardless
	50	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 5x5)				Woody vines – All woody vines greater than 3.28 ft in
1.				height.
2.				
2				Hydrophytic
				Vegetation Present? Yes X No Mo
4		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			

Profile Desc	ription: (Describe	to the dep	oth needed to docu	ument t	he indic	ator or c	onfirm the absence o	of indicators.)
Depth	Matrix			x Featu				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-10	10YR 3/2	100					Loamy/Clayey	
10-18	2.5Y 5/2	97	5YR 4/6	3	С	M	Loamy/Clayey	Prominent redox concentrations
	oncentration, D=Depl	ation BM			kod San		² l contion:	
Hydric Soil				13-11185	Keu Sano	i Giallis.		for Problematic Hydric Soils ³ :
Histosol			Dark Surface (S7)				uck (A10) (LRR K, L, MLRA 149B)
Histic Ep	ipedon (A2)		Polyvalue Belo	w Surfa	ice (S8) (LRR R,	Coast F	Prairie Redox (A16) (LRR K, L, R)
Black Hi	stic (A3)		MLRA 149B)			5 cm M	ucky Peat or Peat (S3) (LRR K, L, R)
Hydroge	n Sulfide (A4)		Thin Dark Surfa	ace (S9) (LRR R	, MLRA	149B) Polyval	ue Below Surface (S8) (LRR K, L)
Stratified	l Layers (A5)		High Chroma S	Sands (S	611) (LRI	R K, L)	Thin Da	rk Surface (S9) (LRR K, L)
X Depleted	Below Dark Surface	e (A11)	Loamy Mucky I	Mineral	(F1) (LR	R K, L)	Iron-Ma	nganese Masses (F12) (LRR K, L, R)
Thick Da	ark Surface (A12)		Loamy Gleyed	Matrix ((F2)		Piedmo	nt Floodplain Soils (F19) (MLRA 149B)
Mesic Sp	oodic (A17)		X Depleted Matrix				Red Pa	rent Material (F21) (outside MLRA 145)
-	A 144A, 145, 149B)		Redox Dark Su	•	,			nallow Dark Surface (F22)
-	lucky Mineral (S1)		Depleted Dark				Other (I	Explain in Remarks)
	leyed Matrix (S4)		Redox Depress	•	,		3	
	edox (S5)		Marl (F10) (LR					ors of hydrophytic vegetation and
Stripped	Matrix (S6)		Red Parent Ma	iterial (F	-21) (MLI	RA 145)		nd hydrology must be present, s disturbed or problematic.
Restrictive L	ayer (if observed):							
Туре:								
Depth (ir	nches):						Hydric Soil Prese	ent? Yes X No
Remarks:								

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)
Project/Site: Massena Green Hydrogen Facility City/County: Massena/S	t. Lawrence Sampling Date: 10-5-2022
Applicant/Owner: Air Products	State: NY Sampling Point: UP-W-1
Investigator(s): J. Strong Section, Towns	hip, Range: 4.004-1-19 &4.004-1-18
Landform (hillside, terrace, etc.): none Local relief (concave, convex, n	one): convex Slope %: 3-8
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.961948 Long: -74	· ·
Soil Map Unit Name: HnB - Hogansburg loam, 3 to 8 percent slopes	NWI classification:
	No (If no, explain in Remarks.)
—	Circumstances" present? Yes No
	xplain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling point location	ns, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No X Is the Sampled Area Hydric Soil Present? Yes No X within a Wetland? Wetland Hydrology Present? Yes No X If yes, optional Wetland	Yes No X ad Site ID:
HYDROLOGY	
	condary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply) Surface Water (A1) Water-Stained Leaves (B9)	_Surface Soil Cracks (B6) Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Iron (C4)	_ Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) Iron Deposits (B5) Thin Muck Surface (C7)	_Geomorphic Position (D2) Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes No X Depth (inches):	
	ydrology Present? Yes No X
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if ava	ilahla.
Remarks:	

Sampling Point: UP-W-1

	Absolute	Dominant	Indicator	
<u>Tree Stratum</u> (Plot size: <u>30x30</u>)	% Cover	Species?	Status	Dominance Test worksheet:
Fraxinus pennsylvanica 2.	10	Yes	FACW	Number of Dominant Species That Are OBL, FACW, or FAC:2 (A)
3. 4.				Total Number of Dominant Species Across All Strata:5(B)
5		·		Percent of Dominant Species That Are OBL, FACW, or FAC: 40.0% (A/B)
7.				Prevalence Index worksheet:
	10	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15x15)				OBL species 0 x 1 = 0
1. Rhamnus cathartica	65	Yes	FAC	FACW species 10 x 2 = 20
2. Lonicera morrowii	10	No	FACU	FAC species <u>65</u> x 3 = <u>195</u>
3.				FACU species 35 x 4 = 140
4.				UPL species 0 x 5 = 0
5.				Column Totals: 110 (A) 355 (B)
6.				Prevalence Index = B/A = 3.23
7.				Hydrophytic Vegetation Indicators:
	75	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
<u>Herb Stratum</u> (Plot size: 5x5)		T		2 - Dominance Test is >50%
1. Rubus allegheniensis	15	Yes	FACU	$3 - Prevalence Index is \leq 3.0^1$
2. Dryopteris sp	30	Yes		4 - Morphological Adaptations ¹ (Provide supporting
2				data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5.				
6.		·		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				Tree – Woody plants 3 in. (7.6 cm) or more in
9.				diameter at breast height (DBH), regardless of height.
10.				Conting/objects Woody plants loss than 3 in DBH
11.		·		Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12.		·		
	45	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 5x5)		1		
1. Vitis labrusca	10	Yes	FACU	Woody vines – All woody vines greater than 3.28 ft in height.
2.				5
3.				Hydrophytic
4.				Vegetation Present? Yes No X
	10	=Total Cover		
Remarks: (Include photo numbers here or on a sepa				
	and one of the official states of the officia			

Depth Color 0-18 10YF	moist) % & 3/3 100	Color (moist)	Features % Type ¹	Loc ²	Texture	Remarks
0-18 10YF	<u>3/3</u> 100	·			Loamy/Clayey	
		·		 		
		· ·		 		
		·				
		·				
		·				
		·				
		· · ·				
		·				
		·				
		·				
¹ Type: C=Concentration		Reduced Matrix, MS	S=Masked Sand	Grains.		ore Lining, M=Matrix.
Hydric Soil Indicators:			_,			oblematic Hydric Soils ³ :
Histosol (A1)	、	Dark Surface (S	-			(10) (LRR K, L, MLRA 149B)
Histic Epipedon (A2)	Polyvalue Below	/ Surface (S8) (I	_RR R,		Redox (A16) (LRR K, L, R)
Black Histic (A3) Hydrogen Sulfide (A	(4)	MLRA 149B) Thin Dark Surfac				Peat or Peat (S3) (LRR K, L, R) low Surface (S8) (LRR K, L)
Stratified Layers (A		High Chroma Sa				face (S9) (LRR K, L)
Depleted Below Da		Loamy Mucky M				ese Masses (F12) (LRR K, L, R)
Thick Dark Surface		Loamy Gleyed M		κ κ, Ε)		odplain Soils (F19) (MLRA 149B)
Mesic Spodic (A17)		Depleted Matrix				laterial (F21) (outside MLRA 145
(MLRA 144A, 14		Redox Dark Surf				Dark Surface (F22)
Sandy Mucky Miner		Depleted Dark S				n in Remarks)
Sandy Gleyed Matr		Redox Depressio			、 `	,
Sandy Redox (S5)	. ,	Marl (F10) (LRR			³ Indicators of	hydrophytic vegetation and
Stripped Matrix (S6)	Red Parent Mate	erial (F21) (MLF	RA 145)		drology must be present,
					unless dist	urbed or problematic.
Restrictive Layer (if ob	served):					
Туре:						
Depth (inches):					Hydric Soil Present?	Yes <u>No X</u>
Remarks:						

U.S. Army WETLAND DETERMINATION DATA See ERDC/EL TR-12-1; th		-	Requirement Contr	-0024, Exp: 11/30/2024 rol Symbol EXEMPT: -15, paragraph 5-2a)
Project/Site: Massena Green Hydrogen Fa	acility	City/County: Massena/S	St. Lawrence Sar	mpling Date: <u>10-5-2022</u>
Applicant/Owner: Air Products			State: NY S	Sampling Point: W-X-1
Investigator(s): J. Strong		Section, Towns	ship, Range: 4.004-1-19 &	4.004-1-18
Landform (hillside, terrace, etc.): none	Local	elief (concave, convex, ı	none): concave	Slope %: 3-8
Subregion (LRR or MLRA): LRR R, MLRA			4.910357	 Datum: NAD 1983
Soil Map Unit Name: MaB - Malone loam,			NWI classification:	
Are climatic / hydrologic conditions on the si		Yes		ain in Remarks.)
Are Vegetation, Soil, or Hydrologic			Circumstances" present?	
			•	
Are Vegetation, Soil, or Hyd			xplain any answers in Rer	
SUMMARY OF FINDINGS – Attack	h site map showing sam	pling point locatio	ns, transects, impo	rtant features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: (Explain alternative procedures	Yes X No Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland? If yes, optional Wetla	Yes X N nd Site ID: Wetland X	°
HYDROLOGY				
Wetland Hydrology Indicators:		<u>Se</u>	econdary Indicators (minim	num of two required)
Primary Indicators (minimum of one is requ			Surface Soil Cracks (B6	
Surface Water (A1) High Water Table (A2)	Water-Stained Leaves (I Aquatic Fauna (B13)	39)	Drainage Patterns (B10 Moss Trim Lines (B16))
Saturation (A3)	Marl Deposits (B15)		Dry-Season Water Tabl	e (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)	(-)
Sediment Deposits (B2)	X Oxidized Rhizospheres	on Living Roots (C3)	Saturation Visible on Ae	erial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Ire		Stunted or Stressed Pla	
Algal Mat or Crust (B4)	Recent Iron Reduction in	n Tilled Soils (C6)	Geomorphic Position (D	2)
Iron Deposits (B5) Inundation Visible on Aerial Imagery (E	Thin Muck Surface (C7) Other (Explain in Remar		Shallow Aquitard (D3) Microtopographic Relief	
Sparsely Vegetated Concave Surface			FAC-Neutral Test (D5)	(04)
Field Observations:	(-)			
Surface Water Present? Yes	No X Depth (inches):			
Water Table Present? Yes	No X Depth (inches):			
Saturation Present? Yes	No X Depth (inches):	Wetland H	lydrology Present?	Yes X No
(includes capillary fringe)		· · · · · · · · · · · · · · · · · · ·		
Describe Recorded Data (stream gauge, m	onitoring well, aerial photos, pre	vious inspections), il ava		
Remarks:				

Sampling Point: W-X-1

Tree Stratum (Plot size: 30x30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Fraxinus pennsylvanica	20	Yes	FACW	Number of Dominant Species
2.				That Are OBL, FACW, or FAC:3 (A)
3				Total Number of Dominant
4		. <u> </u>		Species Across All Strata: <u>3</u> (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 100.0% (A/B)
7				Prevalence Index worksheet:
	20	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15x15)	45		540	OBL species $0 \times 1 = 0$
1. Rhamnus cathartica	45	Yes	FAC	FACW species 65 x 2 = 130
2		·		FAC species 45 x 3 = 135
3.		·		FACU species 0 x 4 = 0
4.				UPL species 0 $x 5 = 0$
5		·		Column Totals: 110 (A) 265 (B)
6.		·		Prevalence Index = B/A = 2.41
7	45	-Tatal Causa		Hydrophytic Vegetation Indicators:
	45	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
<u>Herb Stratum</u> (Plot size: <u>5x5</u>) 1. <i>Onoclea sensibilis</i>	45	Vee		X 2 - Dominance Test is >50%
Onoclea sensibilis 2.	45	Yes	FACW	X_3 - Prevalence Index is ≤3.0 ¹ 4 - Morphological Adaptations ¹ (Provide supporting
				data in Remarks or on a separate sheet)
3.		·		
4 5		·		Problematic Hydrophytic Vegetation ¹ (Explain)
		·		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
6 7		·		Definitions of Vegetation Strata:
8				
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				
11				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12.				Herb – All herbaceous (non-woody) plants, regardless
	45	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 5x5)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				
3				Hydrophytic Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			

Depth Matrix Redox Features (inches) Color (moist) % Typel Loc ² Texture Remarks 0-12 10YR 3/2 100		cription: (Describe	to the dep				ator or c	onfirm the absence	of indicato	rs.)	
0-12 10YR 3/2 100 Loamy/Clayey 12-18 2.5Y 5/2 97 5YR 5/6 3 C M Loamy/Clayey Prominent redox concentrations 12-18 2.5Y 5/2 97 5YR 5/6 3 C M Loamy/Clayey Prominent redox concentrations 12-18 2.5Y 5/2 97 5YR 5/6 3 C M Loamy/Clayey Prominent redox concentrations 12-18 2.5Y 5/2 97 5YR 5/6 3 C M Loamy/Clayey Prominent redox concentrations 12-18 2.5Y 5/2 97 5YR 5/6 3 C M Loamy/Clayey Prominent redox concentrations 12-18 2.5Y 5/2 97 5YR 5/6 3 C M Loamy/Clayey Prominent redox concentrations 12-19 12-10 12-10 12-10 12-10 12-10 12-10 12-10 12-10 12-10 12-10 12-10 12-10 12-10 12-10 12-10 12-10 12-10 12-	Depth	Matrix									
12-18 2.5Y 5/2 97 5YR 5/6 3 C M Loamy/Clayey Prominent redox concentrations Image: Strain Stra	(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	·	Remarks	S
Image: Standy Bedox (S5) Image: Standy Bedox (S5) Image: Standy Bedox (S5) Image: Standy Bedox (S5) Image: Standy Bedox (S5) Image: Standy Bedox (S5) Image: Standy Bedox (S6) Image: Standy Bedox (S6) Image: Standy Bedox (S5) Image: Standy Bedox (S6) Image: Standy Bedox (S6) Image: Standy Bedox (S7) Image: Standy Bedox (S6) Image: Standy Bedox (S6) Image: Standy Bedox (S7) Image: Standy Bedox (S6) Image: Standy Bedox (S6) Image: Standy Bedox (S6) Image: Standy Bedox (S6) Image: Standy Bedox (S6) Image: Standy Bedox (S6) Image: Bedox (S6) Image: Bedox (S6) Image: Bedox (S6) Image: Standy Bedox (S6) Image: Bedox (S6) Image: Bedox (S6) Image: Bedox (S6) Image: Standy Bedox (S6) Image: Bedox (S6) Image: Bedox (S6) Image: Bedox (S6) Image: Standy Bedox (S6) Image: Bedox (S6) Image: Bedox (S6) Image: Bedox (S6) Image: Bedox (S6) Image: Standy Bedox (S6) Image: Bedox (S6) </td <td>0-12</td> <td>10YR 3/2</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td>Loamy/Clayey</td> <td></td> <td></td> <td></td>	0-12	10YR 3/2	100					Loamy/Clayey			
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) Wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:	12-18	2.5Y 5/2	97	5YR 5/6	3	С	М	Loamy/Clayey	Promir	nent redox co	ncentrations
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) Wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:											
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) Wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:											
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) Wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:											
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) Wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:									·		
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) Wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:			<u> </u>						·		
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) Wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type: Depth (inches):											
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) Wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type: Depth (inches):											
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:											
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:			<u> </u>								
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:			<u> </u>						·		
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:											
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:											
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) Red Parent Material (F21) (MLRA 1445) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:	¹ Type: C=Co	oncentration, D=Depl	etion, RM	=Reduced Matrix, N	/IS=Mas	ked Sand	d Grains.	² Location:	PL=Pore Li	ning, M=Matri	ix.
Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Piedmont Floodplain Soils (F19) (MLRA 149B) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Redox (S5) Marl (F10) (LRR K, L) 3 ¹ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:										-	
Black Histic (A3) MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Polyvalue Below Surface (S3) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Mesic Spodic (A17) Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils (F19) (MLRA 149B Mesic Spodic (A17) Depleted Matrix (F3) Red Parent Material (F21) (outside MLRA 149 Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Redox (S5) Marl (F10) (LRR K, L) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Histosol	(A1)		Dark Surface ((S7)			2 cm	Muck (A10) (LRR K, L, MI	LRA 149B)
Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils (F19) (MLRA 149B Mesic Spodic (A17) Depleted Matrix (F3) Red Parent Material (F21) (outside MLRA 149B Mesic Spodic (A17) Depleted Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Redox (S5) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Histic Ep	oipedon (A2)		Polyvalue Belo	ow Surfa	ce (S8) (LRR R,	Coast	Prairie Redo	ox (A16) (LRF	R K, L, R)
Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F3) Red Parent Material (F21) (outside MLRA 149B (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Redox (S5) Marl (F10) (LRR K, L) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Black Hi	stic (A3)		MLRA 149B	5)			5 cm	Mucky Peat of	or Peat (S3) (LRR K, L, R)
X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils (F19) (MLRA 149B Mesic Spodic (A17) Depleted Matrix (F3) Red Parent Material (F21) (outside MLRA 149B (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Redox Depressions (F8) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Hydroge	n Sulfide (A4)		Thin Dark Surf	face (S9) (LRR R	, MLRA	149B) Polyva	alue Below S	Surface (S8) (I	LRR K, L)
Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils (F19) (MLRA 149B Mesic Spodic (A17) Depleted Matrix (F3) Red Parent Material (F21) (outside MLRA 149B (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Redox Depressions (F8) 3Indicators of hydrophytic vegetation and Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Stratified	l Layers (A5)		High Chroma S	Sands (S	611) (LRI	R K, L)	Thin E	ark Surface	(S9) (LRR K ,	, L)
Mesic Spodic (A17) Depleted Matrix (F3) Red Parent Material (F21) (outside MLRA 144 (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Other (Explain in Remarks) Sandy Redox (S5) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	X Depleted	Below Dark Surface	e (A11)	Loamy Mucky	Mineral	(F1) (LR	R K, L)	Iron-N	anganese M	lasses (F12) ((LRR K, L, R)
(MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Marl (F10) (LRR K, L) Stripped Matrix (S6) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Thick Da	ark Surface (A12)		Loamy Gleyed	Matrix (F2)		Piedm	ont Floodpla	ain Soils (F19)) (MLRA 149B)
Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Redox Depressions (F8) 3Indicators of hydrophytic vegetation and Sandy Redox (S5) Marl (F10) (LRR K, L) 3Indicators of hydrophytic vegetation and Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Mesic S	podic (A17)		Depleted Matri	ix (F3)			Red P	arent Materia	al (F21) (outs	side MLRA 145
Sandy Gleyed Matrix (S4) Redox Depressions (F8) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present?	(MLR	A 144A, 145, 149B)		Redox Dark Su	urface (F	-6)		Very S	Shallow Dark	Surface (F22	2)
Sandy Redox (S5) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Hydric Soil Present? Yes X No	Sandy M	lucky Mineral (S1)		Depleted Dark	Surface	e (F7)		Other	(Explain in F	Remarks)	
Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Sandy G	ileyed Matrix (S4)		Redox Depres	sions (F	8)					
unless disturbed or problematic. Restrictive Layer (if observed):	Sandy R	edox (S5)		Marl (F10) (LR	RRK,L)			³ Indica	ators of hydro	ophytic vegeta	ation and
Restrictive Layer (if observed):	Stripped	Matrix (S6)		Red Parent Ma	aterial (F	21) (MLI	RA 145)	wet	and hydrolog	gy must be pr	resent,
Type:								unle	ess disturbed	l or problemat	tic.
Depth (inches): Yes X No											
	-										
Remarks:	Depth (ir	1ches):						Hydric Soil Pres	sent?	Yes X	No
	Remarks:										

awrence Sampling Date: 10-5-2022 State: NY Sampling Point: UP-Y-1 , Range: 4.004-1-19 & 4.004-1-18
, Range: 4.004-1-19 & 4.004-1-18 a): convex Slope %: 3-8 10448 Datum: NAD 1983 WI classification:
, Range: 4.004-1-19 & 4.004-1-18 a): convex Slope %: 3-8 10448 Datum: NAD 1983 WI classification:
10448 Datum: NAD 1983 WI classification:
10448 Datum: NAD 1983 WI classification:
WI classification: No (If no, explain in Remarks.) cumstances" present? Yes No ain any answers in Remarks.)
No (If no, explain in Remarks.) cumstances" present? Yes No ain any answers in Remarks.)
cumstances" present? Yes No ain any answers in Remarks.)
ain any answers in Remarks.)
, transects, important features, etc.
Yes No_X Site ID:
ndary Indicators (minimum of two required)
urface Soil Cracks (B6)
rainage Patterns (B10)
loss Trim Lines (B16) ıry-Season Water Table (C2)
rayfish Burrows (C8)
aturation Visible on Aerial Imagery (C9)
tunted or Stressed Plants (D1)
eomorphic Position (D2)
hallow Aquitard (D3)
licrotopographic Relief (D4) AC-Neutral Test (D5)
rology Present? Yes <u>No X</u>
le:

Sampling Point: UP-Y-1

Tree Stratum (Plot size: 30x30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Fraxinus pennsylvanica	10	Yes	FACW	
2. Tilia americana	15	Yes	FACU	Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
3.				
4.				Total Number of Dominant Species Across All Strata: 4 (B)
5.				·
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 50.0% (A/B)
7.				Prevalence Index worksheet:
	25	=Total Cover		Total % Cover of: Multiply by:
<u>Sapling/Shrub Stratum</u> (Plot size: 15x15)				OBL species 0 $x 1 = 0$
1. Rhamnus cathartica	75	Yes	FAC	FACW species 10 x 2 = 20
2.				FAC species 75 x 3 = 225
3.				FACU species 30 x 4 = 120
4.				UPL species 0 x 5 = 0
5.				Column Totals: 115 (A) 365 (B)
6.				Prevalence Index = B/A = 3.17
7.				Hydrophytic Vegetation Indicators:
	75	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5x5)				2 - Dominance Test is >50%
1				3 - Prevalence Index is ≤3.0 ¹
2.				4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
		=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 5x5)				Woody vines – All woody vines greater than 3.28 ft in
1. Parthenocissus inserta	15	Yes	FACU	height.
2				Hydrophytic
3				Vegetation
4				Present? Yes <u>No X</u>
	15	=Total Cover		
Remarks: (Include photo numbers here or on a separate	arate sheet.)			

	cription: (Describe t	to the dep				ator or co	onfirm the absence	of indicat	tors.)	
Depth	Matrix	0/		x Featu		. 2	- ,		-	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rema	irks
0-18	10YR 3/3	100					Loamy/Clayey			
		······································			·					
					·					
<u> </u>	·				·					
					·					
1 <u>т с с</u>							2,			
	oncentration, D=Deple	etion, RM	=Reduced Matrix, N	IS=Mas	ked Sand	Grains.			Lining, M=Ma	
Hydric Soil			Dauls Courferen (07)					ematic Hydi	
Histosol			Dark Surface (-						MLRA 149B)
	vipedon (A2)		Polyvalue Belo MLRA 149B		ice (50) (LKK K,			dox (A16) (L t or Post (S3	B) (LRR K, L, R)
Black Hi	n Sulfide (A4)		Thin Dark Surf	<i>'</i>		MIDA		-	-) (LRR K, L)
	Layers (A5)		High Chroma S						e (S9) (LRR	
	Below Dark Surface	(A11)	Loamy Mucky	-						2) (LRR K, L, R)
	ark Surface (A12)	(,)	Loamy Gleyed			,,		-	-	19) (MLRA 149B)
	podic (A17)		Depleted Matri		()					utside MLRA 145)
	A 144A, 145, 149B)		Redox Dark Su		=6)				rk Surface (F	
-	lucky Mineral (S1)		Depleted Dark	-	-				Remarks)	
Sandy G	ileyed Matrix (S4)		Redox Depres	sions (F	8)					
Sandy R	edox (S5)		Marl (F10) (LR	R K, L)			³ Indica	itors of hyc	drophytic veg	etation and
Stripped	Matrix (S6)		Red Parent Ma	aterial (F	21) (MLF	RA 145)	wetla	and hydrol	ogy must be	present,
							unle	ss disturbe	ed or problen	natic.
Restrictive I	ayer (if observed):									
Туре:										
Depth (ir	nches):						Hydric Soil Pres	ent?	Yes	<u>No X</u>
Remarks:										

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)
Project/Site: Massena Green Hydrogen Facility City/County: Massena/St.	Lawrence Sampling Date: 10-5-2022
Applicant/Owner: Air Products	State:NYSampling Point:V-Y-1
Investigator(s): J. Strong Section, Townshi	p, Range: 4.004-1-19 &4.004-1-18
Landform (hillside, terrace, etc.): none Local relief (concave, convex, nor	ne): concave Slope %: 3-8
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.959274 Long: -74.9	910367 Datum: NAD 1983
	NWI classification:
Are climatic / hydrologic conditions on the site typical for this time of year? Yes	No (If no, explain in Remarks.)
	rcumstances" present? Yes No
	lain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling point locations	s, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area Hydric Soil Present? Yes X No within a Wetland? Wetland Hydrology Present? Yes X No If yes, optional Wetland	Yes X No Site ID: Wetland Y
Remarks: (Explain alternative procedures here or in a separate report.)	
Primary Indicators (minimum of one is required; check all that apply) Surface Water (A1) Water-Stained Leaves (B9) X High Water Table (A2) Aquatic Fauna (B13) X Saturation (A3) Marl Deposits (B15) Water Marks (B1) Hydrogen Sulfide Odor (C1)	ondary Indicators (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
	Saturation Visible on Aerial Imagery (C9)
	Stunted or Stressed Plants (D1)
	Geomorphic Position (D2) Shallow Aquitard (D3)
	Microtopographic Relief (D4)
	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes X No Depth (inches): 12	
	drology Present? Yes X No
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if availa	able:
Describe Recorded Data (stream gauge, monitoring well, aenai photos, previous inspections), il avaita	IDIC.
Remarks:	

Sampling Point: W-Y-1

Tree Stratum (Plat size) 20v20	Absolute	Dominant	Indicator	Dominance Test werkeheet
Tree Stratum (Plot size: 30x30)	% Cover	Species?	Status	Dominance Test worksheet:
1. Fraxinus pennsylvanica	35	Yes	FACW	Number of Dominant Species
2		·		That Are OBL, FACW, or FAC:3(A)
3		·		Total Number of Dominant
4				Species Across All Strata: 4 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC:(A/B)
7				Prevalence Index worksheet:
	35	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15x15)				OBL species 25 x 1 = 25
1. Rhamnus cathartica	10	Yes	FAC	FACW species $45 \times 2 = 90$
2.				FAC species 10 x 3 = 30
				FACU species 30 x 4 = 120
				UPL species $0 \times 5 = 0$
		·		
5		·		Column Totals: 110 (A) 265 (B)
6		. <u> </u>		Prevalence Index = B/A = 2.41
7		·		Hydrophytic Vegetation Indicators:
	10	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5x5)				X 2 - Dominance Test is >50%
1. Acalypha rhomboidea	30	Yes	FACU	X 3 - Prevalence Index is $\leq 3.0^{1}$
2. Alisma subcordatum	20	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3. Persicaria amphibia	5	No	OBL	data in Remarks or on a separate sheet)
4. Cyperus esculentus	10	No	FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
5 6.		·		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
		·		
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9		·		diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11		·		and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	65	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 5x5)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				
2				Hydrophytic
4		·		Vegetation Present? Yes X No
4		=Total Cover		Present? Yes <u>×</u> No
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			

		to the de				ator or co	onfirm the absence of	findicators.)		
Depth	Matrix			Featur						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remark	(S
0-6	10YR 3/1	95	5YR 3/3	5	С	PL/M	Loamy/Clayey	Prominent	redox co	oncentrations
6-18	10YR 4/1	90	5YR 4/6	5	С	M	Loamy/Clayey	Prominent	redox co	oncentrations
			2.5YR 3/4	5	С	M		Prominent	redox co	oncentrations
1 Type: C=C	oncentration, D=Deple	etion RM	 I=Reduced Matrix_M	S=Mas	ked Sand	Grains	² Location: Pl	L=Pore Lining,	M=Mat	riv
Hydric Soil				0-11103	Keu Gant	i Olallis.		or Problemati		
Histosol			Dark Surface (S	S7)				ck (A10) (LRR	-	
Histic Ep	oipedon (A2)		Polyvalue Belo	w Surfa	ce (S8) (LRR R,	Coast Pr	airie Redox (A	16) (LR	R K, L, R)
	stic (A3)		MLRA 149B)					-		(LRR K, L, R)
	n Sulfide (A4)		Thin Dark Surfa					e Below Surfa		
	Layers (A5)	(High Chroma S					k Surface (S9)		-
	Below Dark Surface	(A11)	Loamy Mucky Mucky			R K, L)		-		(LRR K, L, R)
	ark Surface (A12) podic (A17)		Loamy Gleyed		FZ)				-	9) (MLRA 149B) toido ML BA 145)
	A 144A, 145, 149B)		X Depleted Matrix X Redox Dark Su		6)			allow Dark Sur		tside MLRA 145)
	lucky Mineral (S1)		Depleted Dark					xplain in Rema	•	
	Bleyed Matrix (S4)		Redox Depress		` '		0			
	ledox (S5)		Marl (F10) (LR		- /		³ Indicato	rs of hydrophy	tic vege	tation and
	Matrix (S6)		Red Parent Ma	terial (F	21) (MLI	RA 145)		d hydrology m		
							unless	disturbed or p	roblema	atic.
	Layer (if observed):									
Type: Depth (ir	achae):						Hydric Soil Presen	12 Vo	- ×	No
	iciles).						Hydric Soli Presen	it? Te	s_X	No
Remarks:										
1										

awrence Sampling Date: 10-5-2022 State: NY Sampling Point: UP-Y-1 , Range: 4.004-1-19 & 4.004-1-18
, Range: 4.004-1-19 & 4.004-1-18 a): convex Slope %: 3-8 10448 Datum: NAD 1983 WI classification:
, Range: 4.004-1-19 & 4.004-1-18 a): convex Slope %: 3-8 10448 Datum: NAD 1983 WI classification:
10448 Datum: NAD 1983 WI classification:
10448 Datum: NAD 1983 WI classification:
WI classification: No (If no, explain in Remarks.) cumstances" present? Yes No ain any answers in Remarks.)
No (If no, explain in Remarks.) cumstances" present? Yes No ain any answers in Remarks.)
cumstances" present? Yes No ain any answers in Remarks.)
ain any answers in Remarks.)
, transects, important features, etc.
Yes No_X Site ID:
ndary Indicators (minimum of two required)
urface Soil Cracks (B6)
rainage Patterns (B10)
loss Trim Lines (B16) ıry-Season Water Table (C2)
rayfish Burrows (C8)
aturation Visible on Aerial Imagery (C9)
tunted or Stressed Plants (D1)
eomorphic Position (D2)
hallow Aquitard (D3)
licrotopographic Relief (D4) AC-Neutral Test (D5)
rology Present? Yes <u>No X</u>
le:

Sampling Point: UP-Y-1

Tree Stratum (Plot size: 30x30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Fraxinus pennsylvanica	10	Yes	FACW	
2. Tilia americana	15	Yes	FACU	Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
3.				
4.				Total Number of Dominant Species Across All Strata: 4 (B)
5.				·
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 50.0% (A/B)
7.				Prevalence Index worksheet:
	25	=Total Cover		Total % Cover of: Multiply by:
<u>Sapling/Shrub Stratum</u> (Plot size: 15x15)				OBL species 0 $x 1 = 0$
1. Rhamnus cathartica	75	Yes	FAC	FACW species 10 x 2 = 20
2.				FAC species 75 x 3 = 225
3.				FACU species 30 x 4 = 120
4.				UPL species 0 x 5 = 0
5.				Column Totals: 115 (A) 365 (B)
6.				Prevalence Index = B/A = 3.17
7.				Hydrophytic Vegetation Indicators:
	75	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5x5)				2 - Dominance Test is >50%
1				3 - Prevalence Index is ≤3.0 ¹
2.				4 - Morphological Adaptations ¹ (Provide supporting
3.				data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
		=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 5x5)				Woody vines – All woody vines greater than 3.28 ft in
1. Parthenocissus inserta	15	Yes	FACU	height.
2				Hydrophytic
3				Vegetation
4				Present? Yes <u>No X</u>
	15	=Total Cover		
Remarks: (Include photo numbers here or on a separate	arate sheet.)			

	cription: (Describe t	to the dep				ator or co	onfirm the absence	of indicat	tors.)	
Depth	Matrix	0/		x Featu		. 2	- ,		-	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rema	irks
0-18	10YR 3/3	100					Loamy/Clayey			
		······································			·					
					·					
<u> </u>	·				·					
					·					
1 <u>т с с</u>							2,			
	oncentration, D=Deple	etion, RM	=Reduced Matrix, N	IS=Mas	ked Sand	Grains.			Lining, M=Ma	
Hydric Soil			Dauls Courferen (07)					ematic Hydi	
Histosol			Dark Surface (-						MLRA 149B)
	vipedon (A2)		Polyvalue Belo MLRA 149B		ice (50) (LKK K,			dox (A16) (L t or Post (S3	B) (LRR K, L, R)
Black Hi	n Sulfide (A4)		Thin Dark Surf	<i>'</i>		MIDA		-	-) (LRR K, L)
	Layers (A5)		High Chroma S						e (S9) (LRR	
	Below Dark Surface	(A11)	Loamy Mucky	-						2) (LRR K, L, R)
	ark Surface (A12)	(,)	Loamy Gleyed			,,		-	-	19) (MLRA 149B)
	podic (A17)		Depleted Matri		()					utside MLRA 145)
	A 144A, 145, 149B)		Redox Dark Su		=6)				rk Surface (F	
-	lucky Mineral (S1)		Depleted Dark	-					Remarks)	
Sandy G	ileyed Matrix (S4)		Redox Depres	sions (F	8)					
Sandy R	edox (S5)		Marl (F10) (LR	R K, L)			³ Indica	itors of hyc	drophytic veg	etation and
Stripped	Matrix (S6)		Red Parent Ma	aterial (F	21) (MLF	RA 145)	wetla	and hydrol	ogy must be	present,
							unle	ss disturbe	ed or problen	natic.
Restrictive I	ayer (if observed):									
Туре:										
Depth (ir	nches):						Hydric Soil Pres	ent?	Yes	<u>No X</u>
Remarks:										

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-12-1; the proponent agency is CECW-CO-R	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)
Project/Site: Massena Green Hydrogen Facility City/County: Massena/St.	Lawrence Sampling Date: 10-5-2022
Applicant/Owner: Air Products	State:NYSampling Point:W-Z-1
Investigator(s): J. Strong Section, Townsh	ip, Range: 4.004-1-19 &4.004-1-18
Landform (hillside, terrace, etc.): none Local relief (concave, convex, no	ne): concave Slope %: 0-3
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.962254 Long: -74.	910630 Datum: NAD 1983
	NWI classification:
Are climatic / hydrologic conditions on the site typical for this time of year? Yes	No (If no, explain in Remarks.)
	ircumstances" present? Yes No
	plain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling point location	s, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area within a Wetland? Hydric Soil Present? Yes X No within a Wetland? Wetland Hydrology Present? Yes X No If yes, optional Wetland Remarks: (Explain alternative procedures here or in a separate report.) If yes, optional Wetland If yes, optional Wetland	Yes X No Site ID: Wetland Z
HYDROLOGY	
Wetland Hydrology Indicators: Sec	ondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
	Drainage Patterns (B10)
	Moss Trim Lines (B16) Dry-Season Water Table (C2)
	Crayfish Burrows (C8)
	Saturation Visible on Aerial Imagery (C9)
	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6)	Geomorphic Position (D2)
	Shallow Aquitard (D3)
	Microtopographic Relief (D4)
	FAC-Neutral Test (D5)
Field Observations: Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes No X Depth (inches):	
	drology Present? Yes X No
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if availa	able:
Remarks:	

Sampling Point: W-Z-1

Tree Stratum (Plot size: 30x30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:	
1. Fraxinus pennsylvanica	15	Yes	FACW	Number of Dominant Species	
2. Quercus palustris	10	Yes	FACW	That Are OBL, FACW, or FAC: 8	(A)
3 4				Total Number of Dominant Species Across All Strata: 8	(B)
5 6				Percent of Dominant Species That Are OBL, FACW, or FAC:100.0	<u>% (</u> A/B
7				Prevalence Index worksheet:	
	25	=Total Cover		Total % Cover of: Multiply	y by:
Sapling/Shrub Stratum (Plot size: 15x15	_)			OBL species 20 x 1 =	20
1. Rhamnus cathartica	15	Yes	FAC	· <u> </u>	210
2. Cornus racemosa	15	Yes	FAC	FAC species <u>30</u> x 3 =	90
3. Lonicera morrowii	10	No	FACU	· <u> </u>	120
4. Cornus alba	15	Yes	FACW	UPL species 0 x 5 =	0
5					440 (B
6					38
7				Hydrophytic Vegetation Indicators:	
	55	=Total Cover		1 - Rapid Test for Hydrophytic Vegetat	ion
Herb Stratum (Plot size: 5x5)				X 2 - Dominance Test is >50%	
1. Phalaris arundinacea	30	Yes	FACW	X_3 - Prevalence Index is ≤3.0 ¹	
2. Lythrum salicaria	20	Yes	OBL	4 - Morphological Adaptations ¹ (Provid data in Remarks or on a separate s	
3. Plantago major	10	No	FACU		
4. Symphyotrichum novi-belgii	15	No	FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Solidago canadensis	10	No	FACU	¹ Indicators of hydric soil and wetland hydro	logy must
6. Solidago gigantea	20	Yes	FACW	be present, unless disturbed or problemation	C.
7				Definitions of Vegetation Strata:	
8 9				Tree – Woody plants 3 in. (7.6 cm) or more diameter at breast height (DBH), regardles	
10 11				Sapling/shrub – Woody plants less than 3 and greater than or equal to 3.28 ft (1 m) ta	
12	105	=Total Cover		Herb – All herbaceous (non-woody) plants of size, and woody plants less than 3.28 ft	
<u>Woody Vine Stratum</u> (Plot size: <u>5x5</u> 1.	_)			Woody vines – All woody vines greater th height.	an 3.28 ft i
2				Hydrophytic	
3				Vegetation	
4.				Present? Yes X No	_
		=Total Cover			

Profile Desc	cription: (Describe	to the de	pth needed to docu	ument t	he indica	ator or c	onfirm the absence o	of indicators.)
Depth	Matrix			x Featur				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-12	7.5YR 3/1	95	2.5YR 3/4	5	С	Μ	Loamy/Clayey	Prominent redox concentrations
12-18	7.5YR 4/1	95	2.5YR 4/8	5	<u> </u>	M	Loamy/Clayey	Prominent redox concentrations
¹ Type: C=Co	oncentration, D=Dep	etion, RM		/IS=Mas	ked Sand	d Grains.	² Location: F	PL=Pore Lining, M=Matrix.
Hydric Soil		-	· · ·					for Problematic Hydric Soils ³ :
Histosol	(A1)		Dark Surface (S7)			2 cm M	uck (A10) (LRR K, L, MLRA 149B)
Histic Ep	oipedon (A2)		Polyvalue Belo	w Surfa	ce (S8) (LRR R,	Coast F	Prairie Redox (A16) (LRR K, L, R)
Black Hi	stic (A3)		MLRA 149B)			5 cm M	ucky Peat or Peat (S3) (LRR K, L, R)
Hydroge	n Sulfide (A4)		Thin Dark Surf	ace (S9) (LRR R	, MLRA	149B) Polyvalı	ue Below Surface (S8) (LRR K, L)
	Layers (A5)		High Chroma S					irk Surface (S9) (LRR K, L)
	Below Dark Surface	e (A11)	Loamy Mucky	-				nganese Masses (F12) (LRR K, L, R)
	ark Surface (A12)		Loamy Gleyed			, _,		Int Floodplain Soils (F19) (MLRA 149B)
	podic (A17)		Depleted Matri		12)			rent Material (F21) (outside MLRA 145)
					-6)			nallow Dark Surface (F22)
-	A 144A, 145, 149B)		X Redox Dark Su					· · ·
	lucky Mineral (S1)		Depleted Dark					Explain in Remarks)
	Bleyed Matrix (S4)		Redox Depress		8)		3	
	ledox (S5)		Marl (F10) (LR	-				ors of hydrophytic vegetation and
Stripped	Matrix (S6)		Red Parent Ma	aterial (F	21) (MLF	RA 145)		nd hydrology must be present, s disturbed or problematic.
	Layer (if observed):							·
			<u>_</u>					
	nches):						Hydric Soil Prese	ent? Yes <u>X</u> No
Remarks:								

U.S. Army C WETLAND DETERMINATION DATA S See ERDC/EL TR-12-1; the		-	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)
Project/Site: Massena Green Hydrogen Faci	lity	City/County: Massena/S	St. Lawrence Sampling Date: 10-5-2022
Applicant/Owner: Air Products			State: NY Sampling Point: UP-Z-1
Investigator(s): J. Strong		Section Towns	ship, Range: 4.004-1-19 &4.004-1-18
Landform (hillside, terrace, etc.): none	l ocal r		none): convex Slope %: 3-8
Subregion (LRR or MLRA): LRR R, MLRA 14		Long:7	
· · · · ·			
Soil Map Unit Name: MsB Muskellunge silty			NWI classification:
Are climatic / hydrologic conditions on the site			No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrol			Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrol	ogynaturally problema	tic? (If needed, e	xplain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach	site map showing sam	pling point locatio	ns, transects, important features, etc.
Hydrophytic Vegetation Present?	Yes No X	Is the Sampled Area	
Hydric Soil Present?	Yes No X	within a Wetland?	Yes NoX
Wetland Hydrology Present?	Yes No X	If yes, optional Wetlar	nd Site ID:
Remarks: (Explain alternative procedures he	ere or in a separate report.)		
HYDROLOGY			
Wetland Hydrology Indicators:		Se	econdary Indicators (minimum of two required)
Primary Indicators (minimum of one is require			Surface Soil Cracks (B6)
Surface Water (A1)	Water-Stained Leaves (E		Drainage Patterns (B10)
High Water Table (A2) Saturation (A3)	Aquatic Fauna (B13) Marl Deposits (B15)		_Moss Trim Lines (B16) Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres of		Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Irc	on (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in	Tilled Soils (C6)	Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)		Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)		(s)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B	8)		FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes Water Table Present? Yes	No X Depth (inches): No X Depth (inches):		
Water Table Present? Yes Saturation Present? Yes	NoXDepth (inches):NoXDepth (inches):		lydrology Present? Yes No X
(includes capillary fringe)			
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, pre	vious inspections), if ava	ilable:
Remarks:			

Sampling Point: UP-Z-1

Tree Stratum (Plot size: 30x30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:		
1. Populus tremuloides	15	Yes	FACU	Number of Deminent Species		
2.				Number of Dominant Species That Are OBL, FACW, or FAC:	2	(A)
3				Total Number of Dominant		
4		.		Species Across All Strata:	5	_(B)
5		<u> </u>		Percent of Dominant Species		
6		. . <u></u>		That Are OBL, FACW, or FAC:	40.0%	_(A/B)
7				Prevalence Index worksheet:		
	15	=Total Cover			Multiply by:	
Sapling/Shrub Stratum (Plot size: 15x15)			OBL species 0 x 1 =	=0	
1. Rhamnus cathartica	30	Yes	FAC	FACW species 0 x 2 =	=	
2. Cornus racemosa	20	Yes	FAC	FAC species 50 x 3 =	= 150	
3		<u> </u>		FACU species 95 x 4 =	= 380	
4.		. <u></u>		UPL species 15 x 5 =	= 75	
5				Column Totals: 160 (A)	605	(B)
6.	_			Prevalence Index = B/A =	3.78	
7		<u> </u>		Hydrophytic Vegetation Indicator	s:	
	50	=Total Cover		1 - Rapid Test for Hydrophytic V	Vegetation	
Herb Stratum (Plot size: 5x5)				2 - Dominance Test is >50%		
1. Phalaris arundinacea	35	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹		
2. Fragaria vesca	15	No	UPL	4 - Morphological Adaptations ¹	(Provide su	oportin
3. Viola bicolor	10	No	FACU	data in Remarks or on a sep	arate sheet)	
4. Galium aparine	20	Yes	FACU	Problematic Hydrophytic Veget	ation ¹ (Expla	ain)
5. Rubus allegheniensis	15	No	FACU			
6.		- <u> </u>		¹ Indicators of hydric soil and wetlan be present, unless disturbed or prot		must
7	_	·		Definitions of Vegetation Strata:		
8	_			_		
9.	_	<u> </u>		Tree – Woody plants 3 in. (7.6 cm) diameter at breast height (DBH), re		neiaht
10					-	•
11.	_			Sapling/shrub – Woody plants less and greater than or equal to 3.28 ft		OBH
10	_			and greater than or equal to 3.20 it	(Till) tall.	
12.	95	=Total Cover		Herb – All herbaceous (non-woody) of size, and woody plants less than		ardless
Woody Vine Stratum (Plot size: 5x5) <u></u>			of size, and woody plants less than	5.20 It tall.	
``)			Woody vines – All woody vines gre	eater than 3.	28 ft in
2.		. <u> </u>		height.		
				Hydrophytic		
				Vegetation		
3.						
		=Total Cover		Present? Yes N	lo_X	

Depth Matrix Redox Features		cription: (Describe	to the dept				ator or co	onfirm the absence	of indicators.)
0-18 10YR 3/2 100 Loamy/Clayey	Depth	Matrix							
Image: constraint of the second se	(inches)	Color (moist)	%	Color (moist)	%	Type	Loc ²	Texture	Remarks
Image: constraint of the second se	0-18	10YR 3/2	100					Loamy/Clayey	
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:			<u> </u>	<u> </u>					
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:			<u> </u>						
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Dark Surface (S7) Histo Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) MLRA 149B) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type:									
Histosol (A1) Dark Surface (S7) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Piedmont Floodplain Soils (F19) (MLRA 149B) Medox Dark Surface (S1) Depleted Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Redox (S5) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Polpt (inches): Yes No X			etion, RM=l	Reduced Matrix, N	/IS=Mas	ked Sand	Grains.		
Histic Epipedon (A2) Polyvalue Below Surface (S8) (LRR R, Black Histic (A3) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Mesic Spodic (A17) Depleted Matrix (F2) Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (A17) Depleted Matrix (F3) Red Parent Material (F21) (outside MLRA 145) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Redox (S5) Marl (F10) (LRR K, L) 3 Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	-								•
Black Histic (A3) MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Mesic Spodic (A17) Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (A17) Depleted Dark Surface (F6) Very Shallow Dark Surface (F22) MLRA 144A, 145, 149B) Redox Dark Surface (F7) Other (Explain in Remarks) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Redox (S5) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:			_		-				
Hydrogen Sulfide (A4) Thin Dark Surface (S9) (LRR R, MLRA 149B) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (A17) Depleted Matrix (F3) Red Parent Material (F21) (outside MLRA 145) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Redox (S5) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:						ice (S8) (LRR R,		
Stratified Layers (A5) High Chroma Sands (S11) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Mesic Spodic (A17) Depleted Matrix (F3) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): Type: Type: Depth (inches):					<i>,</i>				
Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (A17) Depleted Matrix (F3) Red Parent Material (F21) (outside MLRA 145) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Redox Depressions (F8) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes No X									
Thick Dark Surface (A12) Loamy Gleyed Matrix (F2) Piedmont Floodplain Soils (F19) (MLRA 149B) Mesic Spodic (A17) Depleted Matrix (F3) Red Parent Material (F21) (outside MLRA 145) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Other (Explain in Remarks) Sandy Redox (S5) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:			(A11)	-					
Mesic Spodic (A17) Depleted Matrix (F3) Red Parent Material (F21) (outside MLRA 145) (MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Other (Explain in Remarks) Sandy Redox (S5) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:			(ATT)				Ν Ν, Ε)		
(MLRA 144A, 145, 149B) Redox Dark Surface (F6) Very Shallow Dark Surface (F22) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Redox Depressions (F8) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:						(12)			
Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Other (Explain in Remarks) Sandy Gleyed Matrix (S4) Redox Depressions (F8) 3Indicators of hydrophytic vegetation and Stripped Matrix (S6) Marl (F10) (LRR K, L) 3Indicators of hydrophytic vegetation and Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:						-6)			
Sandy Gleyed Matrix (S4) Redox Depressions (F8) Sandy Redox (S5) Marl (F10) (LRR K, L) Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) Restrictive Layer (if observed): unless disturbed or problematic. Type: Hydric Soil Present? Depth (inches): No	-					-			
Sandy Redox (S5) Marl (F10) (LRR K, L) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Hydric Soil Present? Yes No X									()
Stripped Matrix (S6) Red Parent Material (F21) (MLRA 145) wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:						,		³ Indica	ators of hydrophytic vegetation and
Restrictive Layer (if observed):						21) (MLI	RA 145)		
Type:				_		, ,			
Depth (inches): Hydric Soil Present? Yes No X	Restrictive	Layer (if observed):							
Depth (inches): Hydric Soil Present? Yes No X	Type:								
								Hydric Soil Pres	ent? Yes No X
								-	
	Remarks.								

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeas See ERDC/EL TR-12-1; the proponent agency is CECW-CO-	
Project/Site: Massena Green Hydrogen Facility City/County	: Massena/St. Lawrence Sampling Date: <u>10-5-2022</u>
Applicant/Owner: Air Products	State: NY Sampling Point: W-Z-2
Investigator(s): J. Strong Se	ection, Township, Range: 4.004-1-19 &4.004-1-18
Landform (hillside, terrace, etc.): none Local relief (conca	ve, convex, none): concave Slope %: 3-8
Subregion (LRR or MLRA): LRR R, MLRA 142 Lat: 44.961516	Long: -74.912008 Datum: NAD 1983
Soil Map Unit Name: MsB - Muskellunge silty clay loam, 3 to 8 percent slopes	NWI classification:
	/es No (If no, explain in Remarks.)
	Are "Normal Circumstances" present? Yes No
	(If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling poi	nt locations, transects, important features, etc.
Hydric Soil Present? Yes X No within a	mpled Area Wetland? Yes X No tional Wetland Site ID: Wetland Z
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves (B9)	Drainage Patterns (B10) Moss Trim Lines (B16)
High Water Table (A2) Aquatic Fauna (B13) Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2) X Oxidized Rhizospheres on Living Ro	
Drift Deposits (B3) Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils	(C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches):	Wetland Hydrology Present? Yes X No
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspe-	ctions), if available:
Remarks:	

VEGETATION – Use scientific names of plants.

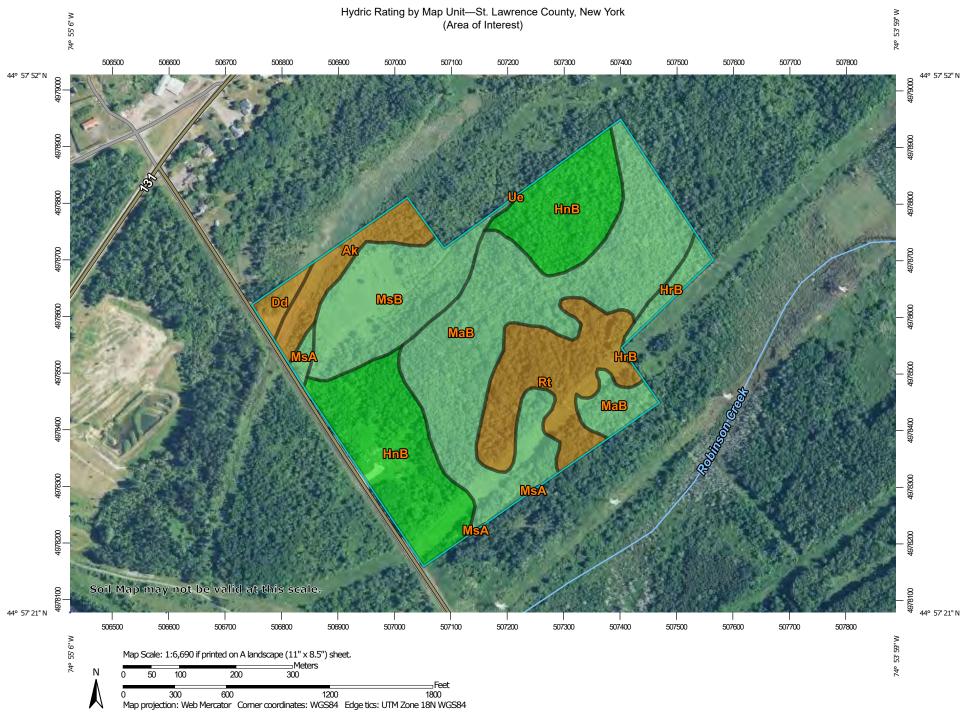
Sampling Point: W-Z-2

Tree Stratum (Plot size: 30x30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:	
1. Betula papyrifera	15	Yes	FACU	Number of Dominant Species	
2				Number of Dominant Species That Are OBL, FACW, or FAC: 6	(A)
3. 4.				Total Number of Dominant Species Across All Strata: 7	(B)
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 85.7%	– (A/B)
7.		·		Prevalence Index worksheet:	_(A/D)
	15	=Total Cover		Total % Cover of: Multiply by:	
Sapling/Shrub Stratum (Plot size: 15x15)			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
1. Cornus alba	_, 10	Yes	FACW	FACW species 100 $x 2 = 200$	
2. Cornus racemosa	 	Yes	FAC	FAC species $35 \times 3 = 105$	
3. Salix alba	10	Yes	FACW	FACU species $15 \times 4 = 60$	
1				UPL species $0 \times 5 = 0$	
F				Column Totals: 150 (A) 365	(B)
6.	_	·		Prevalence Index = $B/A = 2.43$	(2)
7.		·		Hydrophytic Vegetation Indicators:	
	35	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation	
Herb Stratum (Plot size: 5x5)				X 2 - Dominance Test is >50%	
1. Phalaris arundinacea	25	Yes	FACW	X 3 - Prevalence Index is $\leq 3.0^{1}$	
2. Solidago rugosa	20	Yes	FAC	4 - Morphological Adaptations ¹ (Provide su	pportin
3. Solidago gigantea	<u></u>	No	FACW	data in Remarks or on a separate sheet	
4. Cyperus esculentus	15	No	FACW	Problematic Hydrophytic Vegetation ¹ (Expl	ain)
5. Eupatorium perfoliatum	25	Yes	FACW		
6				¹ Indicators of hydric soil and wetland hydrology be present, unless disturbed or problematic.	must
7		·		Definitions of Vegetation Strata:	
8.				-	
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of	height.
10 11				Sapling/shrub – Woody plants less than 3 in. and greater than or equal to 3.28 ft (1 m) tall.	DBH
12	100	=Total Cover		Herb – All herbaceous (non-woody) plants, reg of size, and woody plants less than 3.28 ft tall.	ardless
	100				
Woody Vine Stratum (Plot size:5x5)			Woody vines – All woody vines greater than 3.	.28 ft ir
Woody Vine Stratum (Plot size: 5x5 1.	_)			height.	.28 ft ir
· · · · ·	_)			height.	.28 ft ir
1	_)				.28 ft ir
1 2	_)			height. Hydrophytic	.28 ft ir

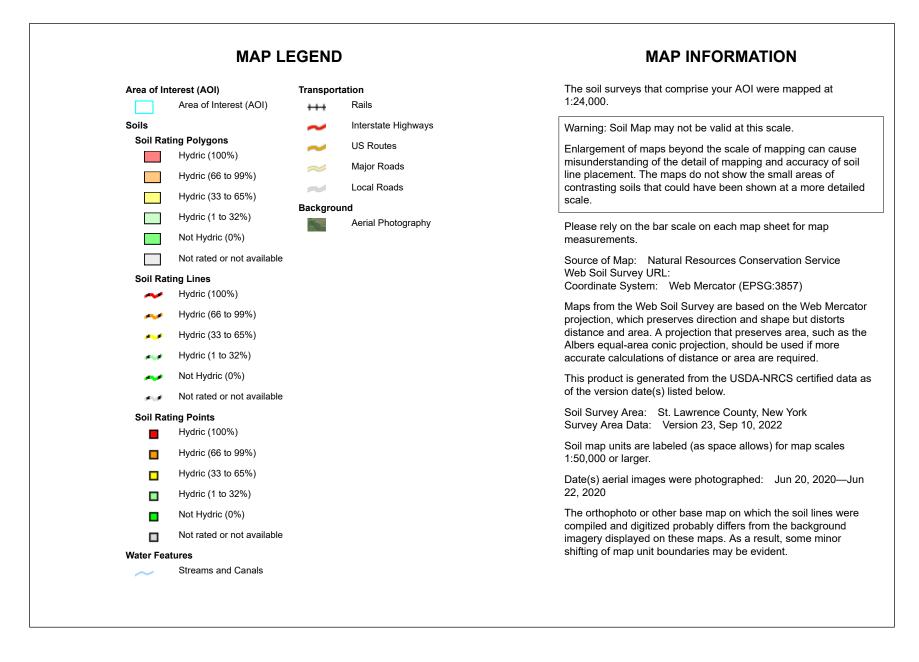
	cription: (Describe	to the dep				ator or c	onfirm the absence	e of indicators.)
Depth	Matrix			x Featur		. 2		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-10	10YR 3/2	100					Loamy/Clayey	
10-18	10YR 4/1	95	5YR 4/6	5	С	M	Loamy/Clayey	Prominent redox concentrations
		<u> </u>						
		<u> </u>						
		······································						
1							2	
'Type: C=Co Hydric Soil	oncentration, D=Depl	etion, RM	=Reduced Matrix, N	/IS=Masl	ked Sand	d Grains.		PL=Pore Lining, M=Matrix. s for Problematic Hydric Soils ³ :
Histosol			Dark Surface ((\$7)				Muck (A10) (LRR K, L, MLRA 149B)
	oipedon (A2)		Polyvalue Belo		ce (S8) (LRR R,		t Prairie Redox (A16) (LRR K, L, R)
	istic (A3)	·	 MLRA 1498		()(,		Mucky Peat or Peat (S3) (LRR K, L, R)
Hydroge	en Sulfide (A4)		Thin Dark Sur	face (S9)) (LRR R	, MLRA	149B) Polyva	alue Below Surface (S8) (LRR K, L)
Stratified	d Layers (A5)		High Chroma	Sands (S	511) (LR	R K, L)	Thin D	Dark Surface (S9) (LRR K, L)
X Depleted	d Below Dark Surface	e (A11)	Loamy Mucky	Mineral	(F1) (LR	R K, L)	Iron-N	Manganese Masses (F12) (LRR K, L, R)
Thick Da	ark Surface (A12)		Loamy Gleyed	Matrix (F2)		Piedm	nont Floodplain Soils (F19) (MLRA 149B
Mesic S	podic (A17)		X Depleted Matr	ix (F3)			Red F	Parent Material (F21) (outside MLRA 14
(MLR	RA 144A, 145, 149B)		Redox Dark S		-			Shallow Dark Surface (F22)
	lucky Mineral (S1)		Depleted Dark				Other	(Explain in Remarks)
	Bleyed Matrix (S4)		Redox Depres	-	8)		2	
	Redox (S5)		Marl (F10) (LR					ators of hydrophytic vegetation and
Stripped	l Matrix (S6)		Red Parent Ma	aterial (F	21) (ML I	RA 145)		land hydrology must be present, ess disturbed or problematic.
Restrictive	Layer (if observed):							
	nches):						Hydric Soil Pres	sent? Yes <u>X</u> No
Remarks:								

U.S. Army (WETLAND DETERMINATION DATA See ERDC/EL TR-12-1; the	OMB Control #: 0710-0024, Exp: 11/30/2024 Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)		
Project/Site: Massena Green Hydrogen Faci	ility	City/County: Massena/S	St. Lawrence Sampling Date: 10-5-2022
Applicant/Owner: Air Products			State: NY Sampling Point: UP-Z-2
Investigator(s): J. Strong		Section Towns	hip, Range: 4.004-1-19 &4.004-1-18
Landform (hillside, terrace, etc.): none	l ocal r		none): convex Slope %: 3-8
		-	
Subregion (LRR or MLRA): LRR R, MLRA 1			4.912057 Datum: NAD 1983 NWI classification:
Soil Map Unit Name: MsB Muskellunge silty			_
Are climatic / hydrologic conditions on the site			No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrol			Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrol	ogynaturally problema	tic? (If needed, e	xplain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach	site map showing sam	pling point locatio	ns, transects, important features, etc.
Hydrophytic Vegetation Present?	Yes No X	Is the Sampled Area	
Hydric Soil Present?	Yes No X	within a Wetland?	Yes No X
Wetland Hydrology Present?	Yes No X	If yes, optional Wetlar	nd Site ID:
Remarks: (Explain alternative procedures he	ere or in a separate report.)		
HYDROLOGY			
Wetland Hydrology Indicators:		<u>Se</u>	condary Indicators (minimum of two required)
Primary Indicators (minimum of one is require			Surface Soil Cracks (B6)
Surface Water (A1)	Water-Stained Leaves (E	39)	Drainage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13)		_Moss Trim Lines (B16) Dry-Season Water Table (C2)
Saturation (A3) Water Marks (B1)	Marl Deposits (B15) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres of	· · · · · · · · · · · · · · · · · · ·	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Irc	• · · · -	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in		Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	_	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7		ks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B	8)		_FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes	No X Depth (inches):		
Water Table Present? Yes	No X Depth (inches):		
Saturation Present? Yes (includes capillary fringe)	No X Depth (inches):		lydrology Present? Yes <u>No X</u>
Describe Recorded Data (stream gauge, mol	nitoring well aerial photos pre	vious inspections) if ava	ilable:
		,,,,,,,,,,,,,,,,,,,,,,,,	
Remarks:			

VEGETATION – Use scientific names of plants.


Sampling Point: UP-Z-2

Tree Stratum (Plot size: 30x30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:0(A)
3				Total Number of Dominant Species Across All Strata:5(B)
5				Percent of Dominant Species That Are OBL, FACW, or FAC:0.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
<u>Sapling/Shrub Stratum</u> (Plot size: 15x15)				OBL species 0 x 1 = 0
1				FACW species 0 x 2 = 0
2.				FAC species $0 \times 3 = 0$
3.				FACU species 55 x 4 = 220
4.				UPL species 45 x 5 = 225
_				Column Totals: 100 (A) 445 (B)
				Prevalence Index = $B/A = 4.45$
7				Hydrophytic Vegetation Indicators:
1		=Total Cover		
		-Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5x5)	0.5			2 - Dominance Test is >50%
1. Phalaris arundinacea	25	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Fragaria vesca	15	Yes	UPL	4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
3. Daucus carota	20	Yes	UPL	
4. Galium aparine	15	Yes	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Vicia americana	15	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must
6. Asclepias syriaca	10	No	UPL	be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9.				diameter at breast height (DBH), regardless of height.
10.				Continue March Interference than 2 in DDU
11.				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12.				
	100	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 5x5)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				
3				Hydrophytic Vegetation
4				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	ate sheet.)			
	,			


Depth (inches)	Matrix	0 110 400	oth needed to docu	x Featur				,		
(11101105)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Rema	arks	
0-18	10YR 3/3	100					Loamy/Clayey			
0-10	1011X 3/3	100					Loamy/Clayey			
_	_	_		_	_					
	ncentration, D=Deple	etion, RM=	Reduced Matrix, N	/IS=Mas	ked Sand	l Grains.		_=Pore Lining, M=M		
Hydric Soil Ir								r Problematic Hyd		
Histosol (-	Dark Surface (-				ck (A10) (LRR K, L,		
	ipedon (A2)	-	Polyvalue Belo		ce (S8) (LRR R,		airie Redox (A16) (L		
Black His			MLRA 149B	·				cky Peat or Peat (S		
	n Sulfide (A4)	-	Thin Dark Surf				· · · ·	Below Surface (S8		
	Layers (A5)		High Chroma S					Surface (S9) (LRR	-	
	Below Dark Surface	(A11)	Loamy Mucky			Κ, L)		ganese Masses (F1		
	rk Surface (A12)	-	Loamy Gleyed		F2)			t Floodplain Soils (F		
	odic (A17)	-	Depleted Matri		· C)			ent Material (F21) (o		
•	A 144A, 145, 149B)	-	Redox Dark Su		-			llow Dark Surface (F cplain in Remarks)	-22)	
	ucky Mineral (S1) leyed Matrix (S4)	-	Depleted Dark Redox Depress							
Sandy Gi		-	Marl (F10) (LR	•	5)		³ Indicator	s of hydrophytic veg	netation and	
	Matrix (S6)	-	Red Parent Ma	-	21) (MI F	RΔ 145)	wetland hydrology must be present,			
		-			21) (МЕ	VA 140)		disturbed or probler	•	
Restrictive L	ayer (if observed):						unicoo			
	, , , , , , , , , ,									
	ches):						Hydric Soil Presen	t? Vas	<u>No X</u>	
	GIIC3).									

APPENDIX B WEB SOIL SURVEY

USDA Natural Resources Conservation Service

Hydric Rating by Map Unit

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Ak	Adjidaumo silty clay, 0 to 3 percent slopes	93	4.4	5.3%
Dd	Deford loamy fine sand	90	1.2	1.4%
HnB	Hogansburg loam, 3 to 8 percent slopes	0	21.1	25.7%
HrB	Hogansburg and Grenville soils, 0 to 8 percent slopes, very stony	3	1.6	1.9%
MaB	Malone loam, 3 to 8 percent slopes	3	30.5	37.1%
MsA	Muskellunge silty clay loam, 0 to 3 percent slopes	5	0.6	0.7%
MsB	Muskellunge silty clay loam, 3 to 8 percent slopes	5	11.5	14.0%
Rt	Runeberg soils, 0 to 3 percent slopes	96	11.3	13.8%
Ue	Udorthents, loamy	1	0.0	0.0%
Totals for Area of Inter	rest		82.2	100.0%

Description

This rating indicates the percentage of map units that meets the criteria for hydric soils. Map units are composed of one or more map unit components or soil types, each of which is rated as hydric soil or not hydric. Map units that are made up dominantly of hydric soils may have small areas of minor nonhydric components in the higher positions on the landform, and map units that are made up dominantly of nonhydric soils may have small areas of minor hydric components in the lower positions on the landform. Each map unit is rated based on its respective components and the percentage of each component within the map unit.

The thematic map is color coded based on the composition of hydric components. The five color classes are separated as 100 percent hydric components, 66 to 99 percent hydric components, 33 to 65 percent hydric components, 1 to 32 percent hydric components, and less than one percent hydric components.

In Web Soil Survey, the Summary by Map Unit table that is displayed below the map pane contains a column named 'Rating'. In this column the percentage of each map unit that is classified as hydric is displayed.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

References:

Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

Rating Options

Aggregation Method: Percent Present Component Percent Cutoff: None Specified Tie-break Rule: Lower

APPENDIX C PHOTOGRAPHS

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of UP-A-1 Data Point.

Photo – Photo of soil at UP-A-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of W-A-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of Wetland B.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of Wetland D.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of Wetland F.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of UP-T-1 Data Point.

Photo – Photo of soil at UP-T-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of UP-T-1 Data Point.

Photo – Photo of soil at UP-T-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of W-T-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of UP-U-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of W-U-1 Data Point.

Photo – Photo of soil at W-U-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of UP-V-1 Data Point.

Photo – Photo of soil at UP-V-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of W-V-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of UP-W-1 Data Point.

Photo – Photo of soil at UP-W-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of W-W-1 Data Point.

Photo – Photo of soil at W-W-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of UP-X-1 Data Point.

Photo – Photo of soil at UP-X-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of W-X-1 Data Point.

Photo – Photo of soil at W-X-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of UP-Y-1 Data Point.

Photo – Photo of soil at UP-Y-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of W-Y-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of UP-Z-1 Data Point.

Photo – Photo of soil at UP-Z-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of W-Z-1 Data Point.

Photo – Photo of soil at W-Z-1 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of UP-Z-2 Data Point.

Photo – Photo of soil at UP-Z-2 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of W-Z-2 Data Point.

Photo – Photo of soil at W-Z-2 Data Point.

Project: Air Products & Chemicals Inc. Marshall Project Town of Massena, St. Lawrence County, NY

Photo – Photo of Stream A

<u>Appendix D</u> Rare, Threatened, and Endangered Species Agency Correspondence

United States Department of the Interior

FISH AND WILDLIFE SERVICE New York Ecological Services Field Office 3817 Luker Road Cortland, NY 13045-9385 Phone: (607) 753-9334 Fax: (607) 753-9699 Email Address: <u>fw5es_nyfo@fws.gov</u>

April 03, 2023

In Reply Refer To: Project Code: 2023-0063961 Project Name: Air Products Green Hydrogen Facility

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2)

(c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Migratory Birds: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see https://www.fws.gov/birds/policies-and-regulations.php.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures see https://www.fws.gov/birds/bird-enthusiasts/threats-to-birds.php.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit https://www.fws.gov/birds/policies-and-regulations/ executive-orders/e0-13186.php.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. **Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.**

Attachment(s):

Official Species List

OFFICIAL SPECIES LIST

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New York Ecological Services Field Office 3817 Luker Road Cortland, NY 13045-9385 (607) 753-9334

PROJECT SUMMARY

Project Code:2023-0063961Project Name:Air Products Green Hydrogen FacilityProject Type:Commercial DevelopmentProject Description:Commercial development of a green hydrogen facilityProject Location:Versite Commercial development of a green hydrogen facility

The approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@44.96051155,-74.90992087319944,14z</u>

Counties: St. Lawrence County, New York

ENDANGERED SPECIES ACT SPECIES

There is a total of 2 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

MAMMALS

NAME	STATUS
Northern Long-eared Bat Myotis septentrionalis	Threatened
No critical habitat has been designated for this species.	
Species profile: <u>https://ecos.fws.gov/ecp/species/9045</u>	
INSECTS	
NAME	STATUS
Monarch Butterfly <i>Danaus plexippus</i>	Candidate
No critical habitat has been designated for this species.	
Species profile: https://ecos.fws.gov/ecp/species/9743	

CRITICAL HABITATS

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

IPAC USER CONTACT INFORMATION

Agency:C&S Engineers, Inc.Name:Shannon BoothAddress:499 Col Eileen Collins BoulevardCity:SyracuseState:NYZip:13212Emailsbooth@cscos.comPhone:3159855938

United States Department of the Interior

FISH AND WILDLIFE SERVICE New York Ecological Services Field Office 3817 Luker Road Cortland, NY 13045-9385 Phone: (607) 753-9334 Fax: (607) 753-9699 Email Address: <u>fw5es_nyfo@fws.gov</u>

In Reply Refer To: Project code: 2023-0063961 Project Name: Air Products Green Hydrogen Facility April 04, 2023

Federal Nexus: yes Federal Action Agency (if applicable):

Subject: Technical assistance for 'Air Products Green Hydrogen Facility'

Dear Shannon Booth:

This letter records your determination using the Information for Planning and Consultation (IPaC) system provided to the U.S. Fish and Wildlife Service (Service) on April 04, 2023, for 'Air Products Green Hydrogen Facility' (here forward, Project). This project has been assigned Project Code 2023-0063961 and all future correspondence should clearly reference this number. **Please carefully review this letter. Your Endangered Species Act (Act) requirements are not complete.**

Ensuring Accurate Determinations When Using IPaC

The Service developed the IPaC system and associated species' determination keys in accordance with the Endangered Species Act of 1973 (ESA; 87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.) and based on a standing analysis. All information submitted by the Project proponent into the IPaC must accurately represent the full scope and details of the Project. Failure to accurately represent or implement the Project as detailed in IPaC or the Northern Long-eared Bat Rangewide Determination Key (Dkey), invalidates this letter.

Determination for the Northern Long-Eared Bat

Based upon your IPaC submission and a standing analysis, your project is not reasonably certain to cause incidental take of the northern long-eared bat. Unless the Service advises you within 15 days of the date of this letter that your IPaC-assisted determination was incorrect, this letter verifies that the Action is not likely to result in unauthorized take of the northern long-eared bat.

Other Species and Critical Habitat that May be Present in the Action Area

The IPaC-assisted determination for the northern long-eared bat does not apply to the following ESA-protected species and/or critical habitat that also may occur in your Action area:

Monarch Butterfly Danaus plexippus Candidate

You may coordinate with our Office to determine whether the Action may cause prohibited take of the animal species listed above. Note that if a new species is listed that may be affected by the identified action before it is complete, additional review is recommended to ensure compliance with the Endangered Species Act.

Next Step

<u>Consultation with the Service is necessary.</u> The project has a federal nexus (e.g., Federal funds, permit, etc.), but you are not the federal action agency or its designated (in writing) non-federal representative. Therefore, the ESA consultation status is <u>incomplete</u> and no project activities should occur until consultation between the Service and the Federal action agency (or designated non-federal representative), is completed.

As the federal agency or designated non-federal representative deems appropriate, they should submit their determination of effects to the Service by doing the following.

- 1. Log into IPaC using an agency email account and click on My Projects, click "Search by record locator" to find this Project using **835-124590999**. (Alternatively, the originator of the project in IPaC can add the agency representative to the project by using the Add Member button on the project home page.)
- 2. Review the answers to the Northern Long-eared Bat Range-wide Determination Key to ensure that they are accurate.
- 3. Click on Review/Finalize to convert the 'not likely to adversely affect' consistency letter to a concurrence letter. Download the concurrence letter for your files if needed.

If no changes occur with the Project or there are no updates on listed species, no further consultation/coordination for this project is required for the northern long-eared bat. However, the Service recommends that project proponents re-evaluate the Project in IPaC if: 1) the scope, timing, duration, or location of the Project changes (includes any project changes or amendments); 2) new information reveals the Project may impact (positively or negatively) federally listed species or designated critical habitat; or 3) a new species is listed, or critical habitat designated. If any of the above conditions occurs, additional coordination with the Service should take place before project implements any changes which are final or commits additional resources.

If you have any questions regarding this letter or need further assistance, please contact the New York Ecological Services Field Office and reference Project Code 2023-0063961 associated with this Project.

Action Description

You provided to IPaC the following name and description for the subject Action.

1. Name

Air Products Green Hydrogen Facility

2. Description

The following description was provided for the project 'Air Products Green Hydrogen Facility':

Commercial development of a green hydrogen facility

The approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@44.96051155,-74.90992087319944,14z</u>

DETERMINATION KEY RESULT

Based on the answers provided, the proposed Action is consistent with a determination of "may affect, but not likely to adversely affect" for the Endangered northern long-eared bat (*Myotis septentrionalis*).

QUALIFICATION INTERVIEW

1. Does the proposed project include, or is it reasonably certain to cause, intentional take of the northern long-eared bat or any other listed species?

Note: Intentional take is defined as take that is the intended result of a project. Intentional take could refer to research, direct species management, surveys, and/or studies that include intentional handling/encountering, harassment, collection, or capturing of any individual of a federally listed threatened, endangered or proposed species?

No

2. The proposed action does not intersect an area where the northern long-eared bat is likely to occur, based on the information available to U.S. Fish and Wildlife Service as of the most recent update of this key. If you have data that indicates that northern long-eared bats <u>are</u> likely to be present in the action area, answer "NO" and continue through the key.

Do you want to make a no effect determination?

No

3. Do you have post-white nose syndrome occurrence data that indicates that northern longeared bats (NLEB) are likely to be present in the action area?

Bat occurrence data may include identification of NLEBs in hibernacula, capture of NLEBs, tracking of NLEBs to roost trees, or confirmed acoustic detections. With this question, we are looking for data that, for some reason, may have not yet been made available to U.S. Fish and Wildlife Service.

No

4. Does any component of the action involve construction or operation of wind turbines?

Note: For federal actions, answer 'yes' if the construction or operation of wind power facilities is either (1) part of the federal action or (2) would not occur but for a federal agency action (federal permit, funding, etc.). *No*

5. Is the proposed action authorized, permitted, licensed, funded, or being carried out by a Federal agency in whole or in part?

Yes

6. Is the Federal Highway Administration (FHWA), Federal Railroad Administration (FRA), or Federal Transit Administration (FTA) funding or authorizing the proposed action, in whole or in part?

No

7. Are you an employee of the federal action agency or have you been officially designated in writing by the agency as its designated non-federal representative for the purposes of Endangered Species Act Section 7 informal consultation per 50 CFR § 402.08?

Note: This key may be used for federal actions and for non-federal actions to facilitate section 7 consultation and to help determine whether an incidental take permit may be needed, respectively. This question is for information purposes only.

No

8. Is the lead federal action agency the Environmental Protection Agency (EPA) or Federal Communications Commission (FCC)? Is the Environmental Protection Agency (EPA) or Federal Communications Commission (FCC) funding or authorizing the proposed action, in whole or in part?

No

9. Have you determined that your proposed action will have no effect on the northern longeared bat? Remember to consider the <u>effects of any activities</u> that would not occur but for the proposed action.

If you think that the northern long-eared bat may be affected by your project or if you would like assistance in deciding, answer "No" below and continue through the key. If you have determined that the northern long-eared bat does not occur in your project's action area and/or that your project will have no effects whatsoever on the species despite the potential for it to occur in the action area, you may make a "no effect" determination for the northern long-eared bat.

Note: Federal agencies (or their designated non-federal representatives) must consult with USFWS on federal agency actions that may affect listed species [50 CFR 402.14(a)]. Consultation is not required for actions that will not affect listed species or critical habitat. Therefore, this determination key will not provide a consistency or verification letter for actions that will not affect listed species. If you believe that the northern long-eared bat may be affected by your project or if you would like assistance in deciding, please answer "No" and continue through the key. Remember that this key addresses only effects to the northern long-eared bat. Consultation with USFWS would be required if your action may affect another listed species or critical habitat. The definition of <u>Effects of the Action</u> can be found here: <u>https://www.fws.gov/media/northern-long-eared-bat-assisted-determination-key-selected-definitions</u>

No

10. Have you contacted the appropriate agency to determine if your action is near any known northern long-eared bat hibernacula?

Note: A document with links to Natural Heritage Inventory databases and other state-specific sources of information on the locations of northern long-eared bat hibernacula is available <u>here</u>. Location information for northern long-eared bat hibernacula is generally kept in state natural heritage inventory databases – the availability of this data varies by state. Many states provide online access to their data, either directly by providing maps or by providing the opportunity to make a data request. In some cases, to protect those resources, access to the information may be limited.

Yes

11. Is any portion of the action area within 0.5-mile radius of any known northern long-eared bat hibernacula? If unsure, contact your local Ecological Services Field Office.

No

12. Does the action area contain any caves (or associated sinkholes, fissures, or other karst features), mines, rocky outcroppings, or tunnels that could provide habitat for hibernating northern long-eared bats?

No

13. Is suitable summer habitat for the northern long-eared bat present within 1000 feet of project activities?

(If unsure, answer "Yes.")

Note: If there are trees within the action area that are of a sufficient size to be potential roosts for bats (i.e., live trees and/or snags \geq 3 inches (12.7 centimeter) dbh), answer "Yes". If unsure, additional information defining suitable summer habitat for the northern long-eared bat can be found at: <u>https://www.fws.gov/media/northern-long-eared-bat-assisted-determination-key-selected-definitions</u>

Yes

14. Will the action cause effects to a bridge?

No

15. Will the action result in effects to a culvert or tunnel?

No

16. Does the action include the intentional exclusion of northern long-eared bats from a building or structure?

Note: Exclusion is conducted to deny bats' entry or reentry into a building. To be effective and to avoid harming bats, it should be done according to established standards. If your action includes bat exclusion and you are unsure whether northern long-eared bats are present, answer "Yes." Answer "No" if there are no signs of bat use in the building/structure. If unsure, contact your local U.S. Fish and Wildlife Services Ecological Services Field Office to help assess whether northern long-eared bats may be present. Contact a Nuisance Wildlife Control Operator (NWCO) for help in how to exclude bats from a structure safely without causing harm to the bats (to find a NWCO certified in bat standards, search the Internet using the search term "National Wildlife Control Operators Association bats"). Also see the White-Nose Syndrome Response Team's guide for bat control in structures

No

- 17. Does the action involve removal, modification, or maintenance of a human-made structure (barn, house, or other building) known or suspected to contain roosting bats?*No*
- 18. Will the action cause construction of one or more new roads open to the public?

For federal actions, answer 'yes' when the construction or operation of these facilities is either (1) part of the federal action or (2) would not occur but for an action taken by a federal agency (federal permit, funding, etc.).

No

19. Will the action include or cause any construction or other activity that is reasonably certain to increase average daily traffic on one or more existing roads?

Note: For federal actions, answer 'yes' when the construction or operation of these facilities is either (1) part of the federal action or (2) would not occur but for an action taken by a federal agency (federal permit, funding, etc.).

No

20. Will the action include or cause any construction or other activity that is reasonably certain to increase the number of travel lanes on an existing thoroughfare?

For federal actions, answer 'yes' when the construction or operation of these facilities is either (1) part of the federal action or (2) would not occur but for an action taken by a federal agency (federal permit, funding, etc.).

No

- 21. Will the proposed action involve the creation of a new water-borne contaminant source (e.g., leachate pond pits containing chemicals that are not NSF/ANSI 60 compliant)? *No*
- 22. Will the proposed action involve the creation of a new point source discharge from a facility other than a water treatment plant or storm water system?

Yes

23. Will the proposed action result in the cutting or other means of knocking down, bringing down, or trimming of any trees suitable for northern long-eared bat roosting?

Note: Suitable northern long-eared bat roost trees are live trees and/or snags \geq 3 inches dbh that have exfoliating bark, cracks, crevices, and/or cavities.

Yes

PROJECT QUESTIONNAIRE

Enter the extent of the action area (in acres) from which trees will be removed - round up to the nearest tenth of an acre. For this question, include the entire area where tree removal will take place, even if some live or dead trees will be left standing.

47.9

In what extent of the area (in acres) will trees be cut, knocked down, or trimmed during the <u>inactive</u> (hibernation) season for northern long-eared bat? **Note:** Inactive Season dates for spring staging/fall swarming areas can be found here: <u>https://www.fws.gov/media/inactive-season-dates-swarming-and-staging-areas</u>

0

In what extent of the area (in acres) will trees be cut, knocked down, or trimmed during the <u>active</u> (non-hibernation) season for northern long-eared bat? **Note:** Inactive Season dates for spring staging/fall swarming areas can be found here: <u>https://www.fws.gov/media/inactive-season-dates-swarming-and-staging-areas</u>

47.9

Will all potential northern long-eared bat (NLEB) roost trees (trees \geq 3 inches diameter at breast height, dbh) be cut, knocked, or brought down from any portion of the action area greater than or equal to 0.1 acre? If all NLEB roost trees will be removed from multiple areas, select 'Yes' if the cumulative extent of those areas meets or exceeds 0.1 acre.

Yes

Enter the extent of the action area (in acres) from which all potential NLEB roost trees will be removed. If all NLEB roost trees will be removed from multiple areas, entire the total extent of those areas. Round up to the nearest tenth of an acre.

47.9

For the area from which all potential northern long-eared bat (NLEB) roost trees will be removed, on how many acres (round to the nearest tenth of an acre) will trees be allowed to regrow? Enter '0' if the entire area from which all potential NLEB roost trees are removed will be developed or otherwise converted to non-forest for the foreseeable future.

0

Will any snags (standing dead trees) \geq 3 inches dbh be left standing in the area(s) in which all northern long-eared bat roost trees will be cut, knocked down, or otherwise brought down?

Yes

Will all project activities by completed by April 1, 2024?

No

IPAC USER CONTACT INFORMATION

Agency:C&S Engineers, Inc.Name:Shannon BoothAddress:499 Col Eileen Collins BoulevardCity:SyracuseState:NYZip:13212Emailsbooth@cscos.comPhone:3159855938

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Fish and Wildlife, New York Natural Heritage Program 625 Broadway, Fifth Floor, Albany, NY 12233-4757 P: (518) 402-8935 I F: (518) 402-8925 www.dec.ny.gov

February 2, 2023

Shannon Booth C&S Engineers, Inc. 499 Col Eileen Collins Boulevard Syracuse, NY 13212

Re: Industrial Development Project - Pontoon Bridge Rd County: St Lawrence Town/City: Massena

Dear Shannon Booth:

In response to your recent request, we have reviewed the New York Natural Heritage Program database with respect to the above project.

Enclosed is a report of rare or state-listed animals and plants, and significant natural communities that our database indicates occur in the vicinity of the project site.

For most sites, comprehensive field surveys have not been conducted; the enclosed report only includes records from our database. We cannot provide a definitive statement as to the presence or absence of all rare or state-listed species or significant natural communities. Depending on the nature of the project and the conditions at the project site, further information from on-site surveys or other sources may be required to fully assess impacts on biological resources.

The presence of the plants and animals identified in the enclosed report may result in this project requiring additional review. For further guidance, and for information regarding other permits that may be required under state law for regulated areas or activities (e.g., regulated wetlands), please contact the NYS DEC Region 6 Office, Division of Environmental Permits, at dep.r6@dec.ny.gov.

Sincerely,

Huids J. Kabling

Heidi Krahling Environmental Review Specialist New York Natural Heritage Program

The following rare plants, rare animals, and significant natural communities have been documented at your project site, or in its vicinity.

We recommend that potential impacts of the proposed project on these species or communities be addressed as part of any environmental assessment or review conducted as part of the planning, permitting and approval process, such as reviews conducted under SEQR. Field surveys of the project site may be necessary to determine the status of a species at the site, particularly for sites that are currently undeveloped and may contain suitable habitat. Final requirements of the project to avoid, minimize, or mitigate potential impacts are determined by the lead permitting agency or the government body approving the project.

The following plant is listed as Endangered by New York State, and is a vulnerable natural resource of conservation concern.

COMMON NAME	SCIENTIFIC NAME	NY STATE LISTING	HERITAGE CONSERVATION STATUS
Vascular Plants			
Great Plains Ladies' Tress	es Spiranthes magnicamporum	Endangered	Critically Imperiled in NYS
Documented within 0.5 mile	of the project site.		16789

This report only includes records from the NY Natural Heritage database. For most sites, comprehensive field surveys have not been conducted, and we cannot provide a definitive statement as to the presence or absence of all rare or state-listed species. Depending on the nature of the project and the conditions at the project site, further information from on-site surveys or other sources may be required to fully assess impacts on biological resources.

If any rare plants or animals are documented during site visits, we request that information on the observations be provided to the New York Natural Heritage Program so that we may update our database.

Information about many of the rare animals and plants in New York, including habitat, biology, identification, conservation, and management, are available online in Natural Heritage's Conservation Guides at www.guides.nynhp.org.

<u>Appendix E</u> SHPO Correspondence

New York State Parks, Recreation and Historic Preservation

KATHY HOCHUL Governor ERIK KULLESEID Commissioner

ARCHAEOLOGY COMMENTS

Phase IA/IB Archaeological Survey Recommendation Project: Massena Green Hydrogen Facility PR#: 22PR08211 Date: 11/10/2022

Your project is in an archaeologically sensitive location. Therefore, the State Historic Preservation Office/Office of Parks, Recreation and Historic Preservation (SHPO/OPRHP) recommends a Phase IA/IB archaeological survey for components of the project that will involve ground disturbance, unless substantial prior ground disturbance can be documented. A Phase IA/IB survey is designed to determine the presence or absence of archaeological sites or other cultural resources in the project's Area of Potential Effects (APE).

If you consider the entire project area to be disturbed, documentation of the disturbance will need to be reviewed by SHPO/OPRHP. Examples of disturbance include mining activities and multiple episodes of building construction and demolition. Documentation of ground disturbance typically consists of soil bore logs, photos, or previous project plans. Agricultural activity is not considered to be substantial ground disturbance.

Please note that in areas with alluvial soils or fill archaeological deposits may exist below the depth of superficial disturbances such as pavement or even deeper disturbances, depending on the thickness of the alluvium or fill. Evaluation of the possible impact of prior disturbance on archaeological sites must consider the depth of potentially culture-bearing deposits and the depth of planned disturbance by the proposed project.

Our office does not conduct archaeological surveys. A 36 CFR 61 qualified archaeologist should be retained to conduct the Phase IA/IB survey.

If you have any questions concerning archaeology, please contact Jessica Schreyer at <u>Jessica.Schreyer@parks.ny.gov</u>

<u>Appendix F</u> Traffic Impact Study

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212

Traffic Impact Study

Hydrogen Electrolysis Facility Town of Massena

> Prepared for: Air Products and Chemicals, Inc. 1940 Air Products Blvd. Allentown, PA 18106

> > January 2023

Executive Summary

A hydrogen electrolysis plant is proposed on Pontoon Bridge Road on an existing 90+/- acre site. A traffic study was conducted as part of the SEQR process. The surrounding street network was analyzed under existing and full build conditions. The study area includes the following intersections:

- 1) NYS Route 131 at County Route 42
- 2) NYS Route 131 at NYS Route 37 West
- 3) NYS Route 131 at NYS Route 37 East
- 4) NYS Route 37 at Main Street
- 5) NYS Route 56 and Andrews Street at NYS Route 37 East

The majority of study area intersections are operating at acceptable levels of service and have additional capacity for an increase in traffic volumes. The intersection of NYS Route 37 and Main Street does experience some delay, however, it can be remedied by updated signal timings. The intersections of NYS Route 131 at NYS Route 37 Eastbound and NYS Route 37 at Main Street have a higher than statewide average collision rate. These intersections may be remedied through low cost improvements such as an intersection ahead warning sign, and improved signal timings. Only a small amount of traffic generated from the proposed facility is anticipated to use these intersections.

The trips generated from the proposed facility are 144 vehicles entering and existing which includes a combination of passenger vehicles and trucks. All trucks will go to and from NYS Route 131 avoiding heading south on Main Street into the core of the Town of Massena. NYS Route 131 east of Pontoon Bridge Road will be used for trucks to access their major routes from NYS Route 37. The site development has a minor/negligible impact to study area intersections.

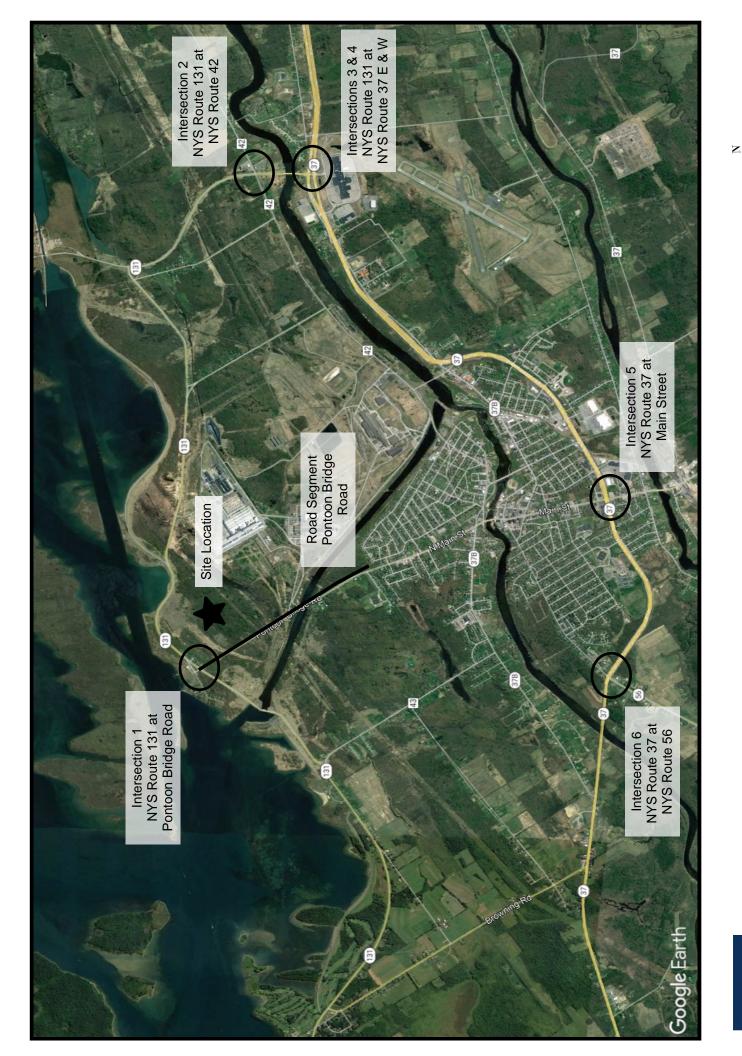
No mitigation is recommended since the project has minimal impacts to the study area, and intersections are expected to continue to operate at their existing level of service.

1.0 Introduction

The purpose of this traffic study is to analyze traffic impacts as a part of the New York State Environmental Quality Review Act (SEQR) for a proposed hydrogen electrolysis plant in Massena, New York. As a part of the SEQR process, a traffic impact study is required when a proposed project will result in a substantial increase in traffic. A substantial increase in traffic is defined as a facility generating 100 or more trips during an hour. This traffic impact study will determine impacts to the local road network, and propose and analyze any necessitated mitigation caused by the proposed facility.

Background

A hydrogen electrolysis facility is proposed on Pontoon Bridge Road on an existing 90+/- acre site located just north of the Alcoa Plant. The remainder of this traffic impact study provides additional information about the site, surrounding street network, and site operations leading to the trip generation values.


The proposed development will include two building facilities, a control room and terminal, with a site driveway to each. Trucks will only use the southern driveway to the terminal which will be gated/secured. The site is expected to be mostly shift work comprising of two shifts. The majority of traffic will be during shift changes, but some trucks and personal vehicles will come and go throughout the day.

Study Area

The study area includes major intersections in the area that are anticipated to accommodate vehicles generated by the proposed site. The two types of vehicle generators considered for the site were employees and delivery trucks. The following intersections make up the study area:

- 6) NYS Route 131 at Pontoon Ridge Road
- 7) NYS Route 131 at County Route 42
- 8) NYS Route 131 at NYS Route 37 West
- 9) NYS Route 131 at NYS Route 37 East
- 10) NYS Route 37 at Main Street
- 11) NYS Route 56 and Andrews Street at NYS Route 37 East

Trucks generated from the facility will not travel south onto Pontoon Bridge Road into the Village of Massena. All trucks will travel on the northern segment of Pontoon Bridge Road between the site driveways and NYS Route 131. All trucks will follow the same travel route until they reach major routes taking them to their final destination. All trucks will use Pontoon Ridge Road to NYS Route 131, and will travel to NYS Route 37. Travel patterns beyond the immediate area are not yet determined since they will be based on their servicing destinations.

CGS Study Area

Figure 1

intersection with NYS Route 131 from 12:00PM Wednesday November 16, 2022 to 12:00PM Thursday November 17, 2022. Table 2 highlights information about the adjacent streets to the site.

Table 2: Street Network Information

Street	Jurisdiction	Functional Classification	AADT
Pontoon Bridge Road	Town of Massena	Urban Minor Arterial	876
NYS Route 131	NYSDOT	Urban Minor Arterial	437

Capacity Analysis

Intersection Analysis

Turning movement counts (TMCs) were collected by Quality Counts on Thursday November 17, 2022 from 7:00AM to 9:00AM and 3:00PM to 6:00PM on a typical weekday. When the traffic counts were taken, a long term bridge closure was in place just north of the intersections of NYS Route 131 at NYS Route 37 East and West. Traffic travelling southbound on NYS Route 131 was diverted onto NYS Route 42 to avoid the closure. Traffic counts were taken at the intersection of County Route 42 and NYS Route 131 in an effort to capture vehicles that would have used NYS Route 37 East and West from NYS Route 131.

Table 3 below highlights the results of the level of service analysis for existing conditions. The intersections impacted by the detour were analyzed using the raw data collected. The next section in the report has additional analyses at those intersections to verify their approximate operations based on historical traffic data.

		Weekday AM			Weekday PM		
Арр	oroach	LOS ^a	V/C ^c	Queue ^d	LOS	V/C	Queue
		(Delay) ^b	V/C	Queue	(Delay)	V/C	Queue
NYS Route 131 a	NYS Route 131 at Pontoon Bridge Road						
Northbound	Left/Thru/Right	a (8.8)	0.02	0	a (9.5)	0.03	0
Southbound	Left/Thru/Right	a (9.9)	0.00	0	b (10.0)	0.00	0
	Intersection		n/a			n/a	
NYS Route 131 a	at County Route 42						
Eastbound	Left/Thru/Right	a (9.5)	0.06	0	b (10.5)	0.09	0
Westbound	Left/Thru/Right	a (9.4)	0.05	0	b (11.1)	0.14	0
	Intersection		n/a			n/a	

Table 3: Intersection LOS Analysis

Methodology

Intersections

The study intersections were analyzed using SYNCHRO 11¹, which is a computer program that implements the methods presented in the 6th Edition Highway Capacity Manual². SYNCHRO determines the **Level of Service** (LOS), which is defined in terms of **Delay**.

Delay is a measure of driver discomfort, frustration, fuel consumption and lost travel time. **Level of Service** criteria are stated in terms of the control delay per vehicle for a 15-minute analysis period and range from "A" to "F". Level of Service A is representative of a movement that is free flowing with minimal delay, while LOS F generally represents long delays. LOS D is generally considered acceptable in urban environments.

The ranges of delay for each level of service, as contained in the 6th Edition Highway Capacity Manual, are shown in Table 1.

Level of	Unsignalized Intersections	Signalized Intersections			
Service (LOS)	Delay (sec)	Delay (sec)	v/c ratio*		
А	0-10	0-10	<1.0		
В	> 10-15	> 10-20	<1.0		
С	> 15-25	> 20-35	<1.0		
D	> 25-35	> 35-55	<1.0		
E	> 35-50	> 55-80	<1.0		
F	over 50	over 80	≥1.0		

Table 1: Intersection Level of Service Criteria

* If the volume to capacity ratio is 1.0 or greater, the LOS is an F

2.0 Existing Conditions

Adjacent Street Network

Pontoon Bridge Road

Pontoon Bridge Road is classified as an urban minor arterial with a speed limit of 55 MPH. The typical section of Pontoon Bridge Road within the study area consists of 10' lanes and 5' shoulders on each side. Automated Traffic Recorders (ATRs) were collected on Pontoon Bridge Road approximately 840 feet south of the

¹ Synchro Studio 11, Traffic Signal Optimization and Simulation Modeling Software, Version 10, Trafficware Corporation, Albany, California, 2020.

² <u>Highway Capacity Manual</u>, Transportation Research Board, National Research Council, Washington D.C., 2016.

	at NYS Route 37 We						
			0.01	г	D (10 2)	0.01	2
Northbound	Left	A (8.3)	0.01	5	B (10.3)	0.01	3
	Thru						
Southbound	Left/Thru/Right	-	-	-	-	-	-
	Left	A (7.0)	0.00	2	A (7.0)	0.00	5
Westbound	Thru	A (4.9)	0.11	45	A (4.7)	0.15	77
	Right	-	-	-	-	-	-
	Intersection	A (2.7)	-	-	A (4.8)	-	-
NYS Route 131 a	at NYS Route 37 Ea	st					
Northbound	Thru	-	-	-	B (12.5)	0.00	5
Northbound	Right	A (0.0)	0.00	0	A (0.0)	0.01	0
Southbound	Left/Thru/Right	A (9.0)	0.00	0	A (9.7)	0.00	3
	Left	A (7.0)	0.00	4	A (7.0)	0.00	3
Eastbound	Thru	A (4.8)	0.13	53	A (4.6)	0.12	63
	Right	A (0.0)	0.00	0	A (0.0)	0.00	0
	Intersection	A (4.7)	-	-	A (4.6)	-	-
NYS Route 37 a	t Main Street						
Nextelesured	Left	D (40.4)	0.36	87	D (49.5)	0.47	103
Northbound	Thru/Right	D (36.0)	0.70	234	D (44.5)	0.79	309
	Left	D (40.6)	0.35	80	D (50.2)	0.53	127
Southbound	Thru/Right	C (29.8)	0.48	163	D (40.4)	0.72	293
	Left	D (40.2)	0.18	45	D (48.0)	0.28	61
Eastbound	Thru/Right	C (23.1)	0.28	94	C (25.8)	0.26	86
	Left	D (41.5)	0.36	75	D (47.5)	0.61	168
Westbound	Thru/Right	B (19.4)	0.70)	234	C (21.2)	0.23	105
	Intersection	C (30.6)	-	-	D (37.9)	-	-
NYS Route 37 a	t Andrews Street ar	nd NYS Route	e 56		<u> </u>	1	
	Left	C (21.8)	0.13	47	C (23.0)	0.33	90
Northbound	Thru/Right	B (13.6)	0.15	56	B (16.6)	0.31	109
	Left	A (8.5)	0.09	23	A (8.9)	0.10	23
Southbound	, Thru/Right	B (16.7)	0.34	98	C (20.2)	0.35	89
	Left/Thru	B (18.2)	0.34	110	C (20.1)	0.35	98
Eastbound	Right	A (4.5)	0.17	27	A (0.2)	0.07	0
Westbound	Left/Thru/Right	B (17.8)	0.39	125	B (19.8)	0.47	138
	Intersection	B (15.3)	-	-	B (18.3)	-	-
L		2 (.3.3)			2 (10.0)	l	

Table 3: Intersection LOS Analysis Continued

*lowercase letters signify the HCM $6^{\rm th}$ edition Stop Control methodology was used

a: level-of-service

b: delay is measured in secondsc: volume to capacity ratiod: 95th queue length, measured in feet

Based on the level of service analysis, the majority of intersections are operating at acceptable levels of service with available capacity. The intersection of NYS Route 37 at Main Street has multiple movements operating at a LOS D in the AM and PM peak periods, and an overall LOS D in the PM peak.

Detour on NYS Route 131

Additional analyses were completed to check for potential impacts the long term bridge closure and detour had on traffic volumes at the NYS Route 131 and NYS Route 37 intersections. The NYSDOT Traffic Data Viewer was used to look at historical traffic counts approaching the intersections of NYS Route 131 and CR 42, as well as NYS Route 131 and NYS Route 37 Eastbound and Westbound. The historical data was used to balance the intersections to account for movements that were missing. Volumes were added to the following intersection approaches and movements:

NYS Route 131 at CR 42

- Northbound Through
- Southbound Through
- Eastbound Right

NYS Route 131 AT NYS Route 37 Westbound

- Northbound Through
- Southbound Right
- Southbound Through
- Westbound Right

NYS Route 131 AT NYS Route 37 Eastbound

- Southbound Left
- Eastbound Left

A LOS analysis was completed at the three intersections impacted by the detour. The results are shown in Table 4. The increase in volumes had little impact to the intersections. All intersections have additional capacity to accommodate an increase in vehicles, and are operating at acceptable levels of service.

			Weekday AM			Weekday PM		
Арр	proach	LOS ^a (Delay) ^b	V/C ^c	Queue ^d	LOS (Delay)	V/C	Queue	
NYS Route 131 a	at County Route 42							
Eastbound	Left/Thru/Right	b (10.4)	0.18	0.7	b (12.6)	0.31	1.3	
Westbound	Left/Thru/Right	b (11.2)	0.07	0.2	b (13.2)	0.13	0.4	
	Intersection		n/a			n/a		
NYS Route 131 a	at NYS Route 37 We	est						
N o stalo o uno d	Left	C (31.3)	0.01	m7	C (31.7)	0.01	9	
Northbound	Thru	C (31.9)	0.27	86	C (30.3)	0.16	58	
	Thru	C (20.7)	0.23	58	B (10.5)	0.26	71	
Southbound	Right	A (0.4)	0.10	0	A (2.0)	0.22	11	
	Left	B (17.0)	0.00	3	B (16.0)	0.00	6	
Westbound	Thru	B (17.2)	0.29	63	B (15.8)	0.31	103	
	Right	A (0.3)	0.10	0	A (0.2)	0.08	0	
	Intersection	B (17.6)	-	-	B (14.1)	-	-	
NYS Route 131 a	at NYS Route 37 Ea	st						
N La utila la la cuma al	Thru	B (18.0)	0.00	3	B (19.5)	0.00	5	
Northbound	Right	A (0.0)	0.01	0	A (0.0)	0.01	0	
Southbound	Left/Thru/Right	A (5.2)	0.14	5	A (5.0)	0.15	6	
	Left	B (18.3)	0.24	63	B (16.1)	0.09	43	
Eastbound	Thru	B (17.6)	0.36	74	B (15.4)	0.25	84	
	Right	A (0.0)	0.01	0	A (0.0)	0.01	0	
	Intersection	B (15.2)	-	-	B (12.7)	-	-	

.

Table 4: Detour Impacted Intersections LOS Analysis

Collision Analysis

A collision analysis was completed for the study area intersections, which includes four signalized intersections and two sign-controlled intersections. There was a total of 58 collisions over a five-year period, from June 2017 through May 2022. The most common type of collision was rear end, with a total of 30 out of 58 collisions. The next most common collision types were overtaking and right-angle collisions. Detailed accident analyses are provided in Appendix B. Table 5 is a summary of the predominant collision types at each intersection.

Three out of the four signalized intersections had collision rates above the 2019 reported statewide average for similar facilities. One intersection in particular has a significantly high number of collisions, Main Street at NYS Route 131. Two intersections (one signalized and one sign-controlled) boasted zero collisions over the

past five years. All intersections that had an above statewide average collision rate are further investigated for the cause and potential mitigation measures to improve safety following Table 5.

Table 5: Collision Analysis									
Type of Collision	Number	Percentage							
NYS Route 131 at Pontoon Bridge Rd									
Collision Rate: 0.57 acc/me	Collision Rate: 0.57 acc/mev > Statewide Average: 0.19 acc/mev								
Right Angle	Right Angle 1 100%								
NYS Route 37 Eastbound a	t NYS Route 131 & N	Mall Rd							
Collision Rate: 1.19 acc/mev	v > Statewide Average	ge: 0.26 acc/mev							
Rear End	4	36%							
Overtaking	1	9%							
Right Angle	5	46%							
Other	1	9%							
NYS Route 37 at Main St									
Collision Rate: 1.44 acc/me	v > Statewide Avera	ge: 0.26 acc/mev							
Rear End	22	58%							
Overtaking	4	10%							
Right Angle	7	18%							
Left Turn	2	5%							
NYS Route 37 at NYS Route	e 56 and Andrews S	t							
Collision Rate: 0.41 acc/me	v > Statewide Avera	ge: 0.26 acc/mev							
Rear End	4	50%							
Overtaking	1	13%							
Right Angle	1	13%							
Left Turn	2	25%							

NYS Route 131 at NYS Route 37 Eastbound and Mall Road

Due to the bridge closure just north of this intersection, traffic counts are uncharacteristically low at this intersection. Therefore, the collision rate is inflated due to the low traffic volumes. Specific historical traffic data on the NYSDOT Traffic Data Viewer for northbound and southbound approaches at this intersection was

not available. The most predominant collision style at this intersection was right angle. Causes listed in the collision reports include unsafe speed, and disregarding a traffic control device. The approach speed limit for NYS Route 37 Eastbound is 45 MPH, and is 30 MPH for the southbound approach. The existing signal clearance times are adequate with a length of 5 seconds of yellow and 2 seconds of all red. It is recommended an intersection ahead sign be installed on NYS Route 37, since one does not exist today. Speed data should also be collected since unsafe speeds is a known cause also.

NYS Route 37 and Main Street

This intersection was examined more closely due to the collision rate being significantly higher than the statewide average. There is a pattern of rear ends at the intersection, of the 22 rear end collisions, 10 of those happened in wet/snowy conditions. Typical countermeasures for slippery surfaces include pavement overlays, grooved pavement, and adequate drainage. Another countermeasure for slippery surfaces is to reduce the speed limit on approaches. The northbound and southbound approaches have a speed limit of 30 MPH, and the eastbound and westbound approaches have a speed limit of 35 MPH, both which seem appropriate and this countermeasure is not recommended. There is no apparent cause for the higher than average collisions, besides many are experience during wet and snowy conditions.

NYS Route 37 at NYS Route 56 and Andrews Street

This intersection is slightly above the statewide average. The majority of collisions are rear ends. A typical cause for rear ends at a signalized intersection can be inappropriate clearance times. The intersection clearance times are appropriate, since this is location is only slightly above the statewide average, it isn't recommended for further mitigation measures. There is only a minor amount of traffic that this facility would generate that may go through this intersection.

Based on the review of collision patterns at intersections, the following are suggested:

- NYS Route 131 at NYS Route 37 Eastbound and Mall Road: Install an intersection ahead sign on the NYS Route 37 eastbound approach
- NYS Route 37 at Main Street: Revise signal timings to obtain better levels of service.

3.0 No Build Condition

Historical traffic data was reviewed at three different roadway segments within the study area. In general, the study area from 2013 to 2019 had an overall decline in traffic volumes. Therefore, no background growth rate is proposed to analyze the future no build condition.

4.0 Build Condition

Site Information

A new hydrogen electrolysis plant is proposed to be constructed on a green-field site located on a 90 acre lot with access to and from Pontoon Bridge Road. The site is bound by Pontoon Bridge Road, NYS Route 131, and the existing Alcoa plant. Appendix A Figure 2 contains a site plan. The anticipated construction completion year is 2026.

Site Operations

The site is only anticipated to have employees and trucks. Trucks would be classified as a WB-62 or larger. Estimated site traffic was provided by the site owner, Table 5 shows the approximate number of vehicles generated by phase, and at full build out. At full build out, the anticipated weekday (Monday through Thursday) daily total of traffic will be 170 vehicles. On Fridays and the weekend, the daily total of vehicles will be less than a typical weekday.

Vehicles in 24 Hours	Monday – Thursday	Friday	Weekend						
Phase 1	Phase 1								
Cars	95	80	24						
Trucks	25	25	6						
Total in 24 hours	120	105	30						
Phase 2									
Cars	32	33	8						
Trucks	18	17	4						
Total in 24 hours	50	50	12						
Full Build Out									
Cars	127	113	32						
Trucks	43	42	10						
Total in 24 hours	170	155	42						

Table 5: Site Trip Generation Estimates (Round Trips)

Trip Generation

Traffic will be generated by the control room and the terminal building. The control room will generate traffic from employees which will be mostly comprised of shift work concentrated on an AM shift and a PM shift. Shift change times are anticipated between 6:00 AM to 9:00 AM and 4:00 PM to 7:00 PM. The remainder of the control room will be some staff that may come and go throughout the day outside of shift changes. The terminal building will generate traffic from staff and trucks. The traffic will be split approximately 50% between staff vehicles and trucks. The staff traffic will be during the two peaks which coincide with the control

room, and trucks will be spread throughout the day. Since truck traffic will be mostly throughout the day, assume 40% of trips for trucks will occur during peak hours.

	Co	ontrol Rc	om		Terminal					
Peak	Pass	enger Ve	ehicles	Passenger Vehicles		Trucks			Site Totals	
	Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total	
AM	42	42	84	21	21	42	9	9	18	144
PM	42	42	84	21	21	42	9	9	18	144
	Daily Total Trips During Peak Hours							288		

Table 6. Trip Ce	noration During	1 Dasks for Waa	kday Operations
Table 0. The Ge		FEARS IOF WEE	Kuay Operations

Based on Table 6 above, a peak hour will consist of 144 total trips, 18 of those being trucks.

Trip Distribution

Assume that facility employees taking a passenger vehicle will follow existing travel patterns. Trucks will be using NYS Route 131 east of Pontoon Bridge Road. Refer to Figure 4 in Appendix A for travel patterns to and from the facility. Note that traffic patterns during the AM and PM peaks on the adjacent streets near the site are similar. There are low traffic volumes, and the split between northbound and southbound on Pontoon Bridge Road is approximately 45% and 55%. For ease of calculations, these were rounded to 50% split between northbound and southbound traffic.

Full Build Capacity Analysis

Based on the trip distribution, it is expected Tables 7 and 8 summarize the results of the intersection/site driveway LOS analysis for the build condition. The proposed driveways are anticipated to operate at a LOS A. The site volumes have a minimal/negligible impact to the study area intersections.

Approach			Existing		Proposed		
		LOS ^a (Delay) ^b	V/C ^c	Queue ^d	LOS (Delay)	V/C	Queue
Site Driveway 1	(Northern) at Ponto	on Bridge Ro	bad				
Westbound	Left/Right	-	-	-	a (9.2)	0.05	0
	Intersection		-			n/a	
Site Driveway 2	(Southern) at Ponto	oon Bridge Ro	bad				
Westbound	Left/Right	-	-	-	a (9.0)	0.04	0
	Intersection		-			n/a	
NYS Route 131 a	at Pontoon Bridge R	load					
Northbound	Left/Thru/Right	a (8.8)	0.02	0	a (9.5)	0.09	0
Southbound	Left/Thru/Right	a (9.9)	0.00	0	b (10.5)	0.00	0
	Intersection		n/a			n/a	

Table 7: Intersection LOS Analysis AM Peak

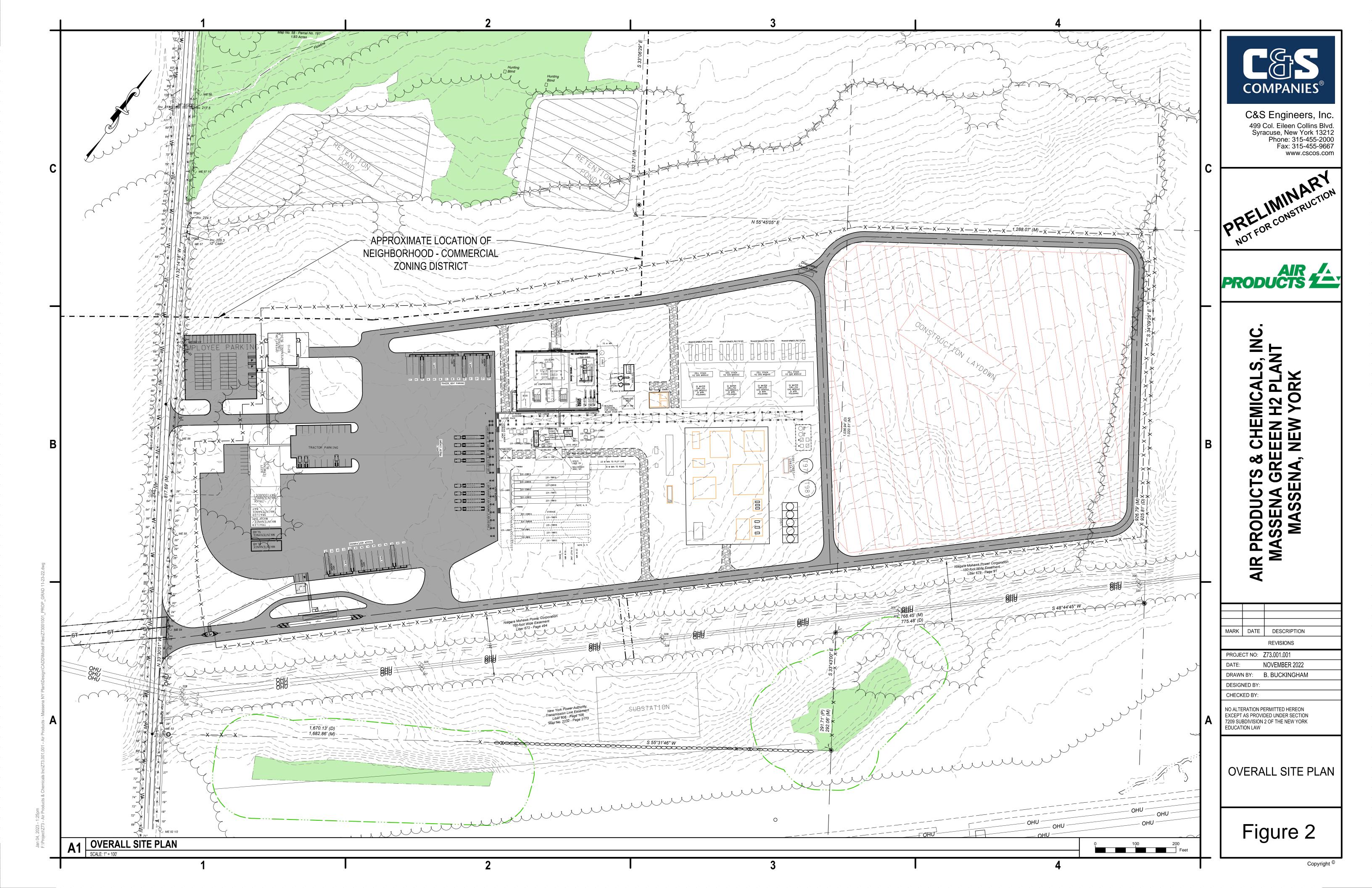
Table 7: Intersection LOS Analysis AM Peak Continued

	511 EOS 7 (1013515 7 (14						
NYS Route 131 a	at County Route 42						
Eastbound	Left/Thru/Right	a (9.5)	0.06	0	b (10.7)	0.19	0
Westbound	Left/Thru/Right	a (9.4)	0.05	0	b (11.6)	0.07	0
	Intersection		n/a			n/a	
NYS Route 131 a	at NYS Route 37 We	est					
Northbound	Left	C (31.3)	0.01	m7	C (31.0)	0.01	m7
ποιτηρομηα	Thru	C (31.9)	0.27	86	C (32.6)	0.29	94
Southbound	Thru	C (20.7)	0.23	58	C (21.0)	0.26	64
Southbound	Right	A (0.4)	0.10	0	A (0.12)	0.23	64
	Left	B (17.0)	0.00	3	B (17.0)	0.00	3
Westbound	Thru	B (17.2)	0.29	63	B (17.2)	0.21	64
	Right	A (0.3)	0.10	0	A (0.3)	0.10	0
	Intersection	A (2.7)	B (17.6)	-	B (17.4)	-	-
NYS Route 131 a	at NYS Route 37 Eas	st					
Northbound	Thru	B (18.0)	0.00	3	B (18.0)	0.00	3
northbound	Right	A (0.0)	0.01	0	A (0.0)	0.15	0
Southbound	Left/Thru/Right	A (5.2)	0.14	5	A (5.2)	0.15	5
	Left	B (18.3)	0.24	63	B (18.5)	0.19	71
Eastbound	Thru	B (17.6)	0.36	74	B (17.3)	0.26	76
	Right	A (0.0)	0.01	0	A (0.0)	0.00	0
	Intersection	A (4.7)	B (15.2)	-	B (15.0)	-	-
NYS Route 37 a	t Main Street						
Northbound	Left	D (40.4)	0.36	87	D (40.8)	0.37	87
Northbourid	Thru/Right	D (36.0)	0.70	234	D (36.6)	0.72	241
Southbound	Left	D (40.6)	0.35	80	D (41.0)	0.35	80
Southbound	Thru/Right	C (29.8)	0.48	163	C (29.9)	0.48	164
Eastbound	Left	D (40.2)	0.18	45	D (40.6)	0.18	46
Eastboulla	Thru/Right	C (23.1)	0.28	94	C (23.6)	0.29	97
Westbound	Left	D (41.5)	0.36	75	D (42.0)	0.39	80
vvestbound	Thru/Right	B (19.4)	0.70)	234	B (19.5)	0.15	67
	Intersection	C (30.6)	-	-	C (31.0)	-	-

NYS Route 37 a	t Andrews Street ar	nd NYS Route	e 56				
Northbound	Left	C (21.8)	0.13	47	C (22.0)	0.13	48
Northbound	Thru/Right	B (13.6)	0.15	56	B (13.7)	0.15	59
Southbound	Left	A (8.5)	0.09	23	A (8.4)	0.09	23
Southbound	Thru/Right	B (16.7)	0.34	98	B (16.9)	0.34	102
Eastbound	Left/Thru	B (18.2)	0.34	110	B (18.3)	0.34	111
EastDouriu	Right	A (4.5)	0.17	27	A (4.5)	0.17	28
Westbound	Left/Thru/Right	B (17.8)	0.39	125	B (17.9)	0.39	126
	Intersection	B (15.3)	-	-	B (15.4)	-	-

Table 7: Intersection LOS Analysis AM Peak Continued

Table 8: Intersection LOS Analysis PM Peak


			Existing			Proposed	
Арр	proach	LOS ^a (Delay) ^b	V/C ^c	Queue ^d	LOS (Delay)	V/C	Queue
Site Driveway 1	(Northern) at Ponto	on Bridge Ro	ad				
Westbound	Left/Right	-	-	-	a (9.2)	0.05	0
	Intersection		-			n/a	
Site Driveway 2	(Southern) at Ponto	oon Bridge Ro	bad				
Westbound	Left/Right	-	-	-	a (8.9)	0.03	0
	Intersection		-			n/a	
NYS Route 131 a	at Pontoon Bridge R	load					
Northbound	Left/Thru/Right	a (9.5)	0.03	0	a (9.9)	0.10	0
Southbound	Left/Thru/Right	b (10.0)	0.00	0	b (10.6)	0.01	0
	Intersection		n/a			n/a	
NYS Route 131 a	at County Route 42						
Eastbound	Left/Thru/Right	b (12.6)	0.31	1.3	b (13.1)	0.33	1.4
Westbound	Left/Thru/Right	b (13.2)	0.13	0.4	b (13.9)	0.14	0.5
	Intersection		n/a			n/a	
NYS Route 131 a	at NYS Route 37 We	est					
Northbound	Left	C (31.7)	0.01	9	C (31.3)	0.01	m9
Northbound	Thru	C (30.3)	0.16	58	C (30.4)	0.18	65
Southbound	Thru	B (10.5)	0.26	71	B (19.4)	0.28	78
Southbound	Right	A (2.0)	0.22	11	A (2.5)	0.24	16
	Left	B (16.0)	0.00	6	B (16.3)	0.00	6
Westbound	Thru	B (15.8)	0.31	103	B (15.9)	0.31	104
	Right	A (0.2)	0.08	0	A (0.2)	0.10	0
	Intersection	B (14.1)	-	-	B (14.3)	-	-

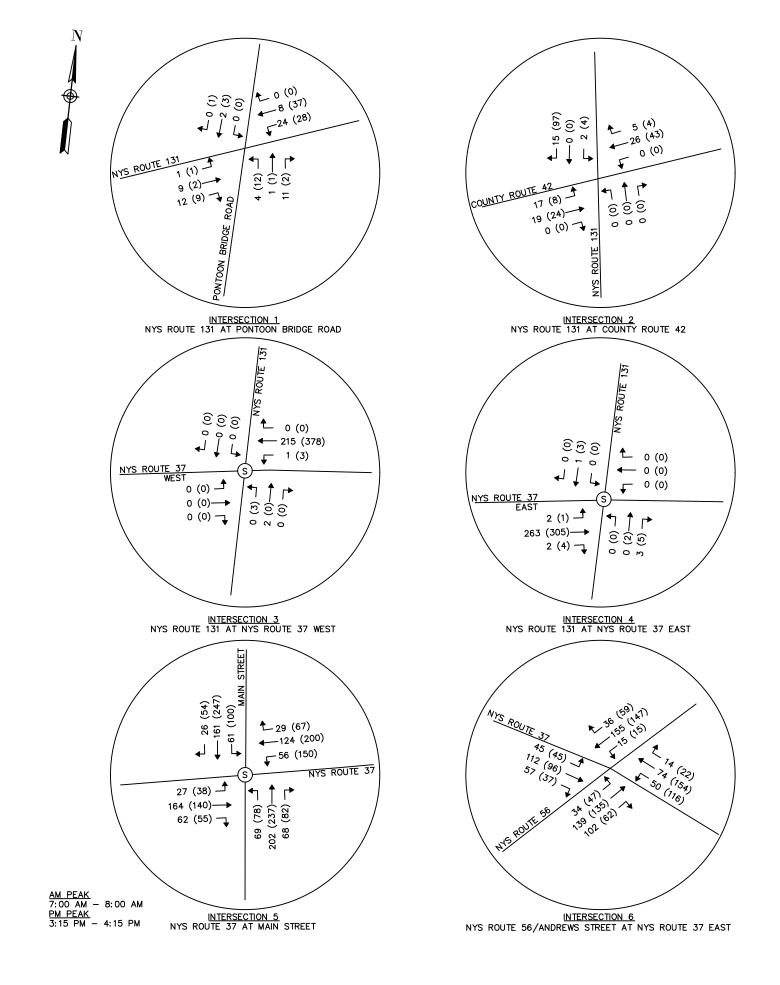
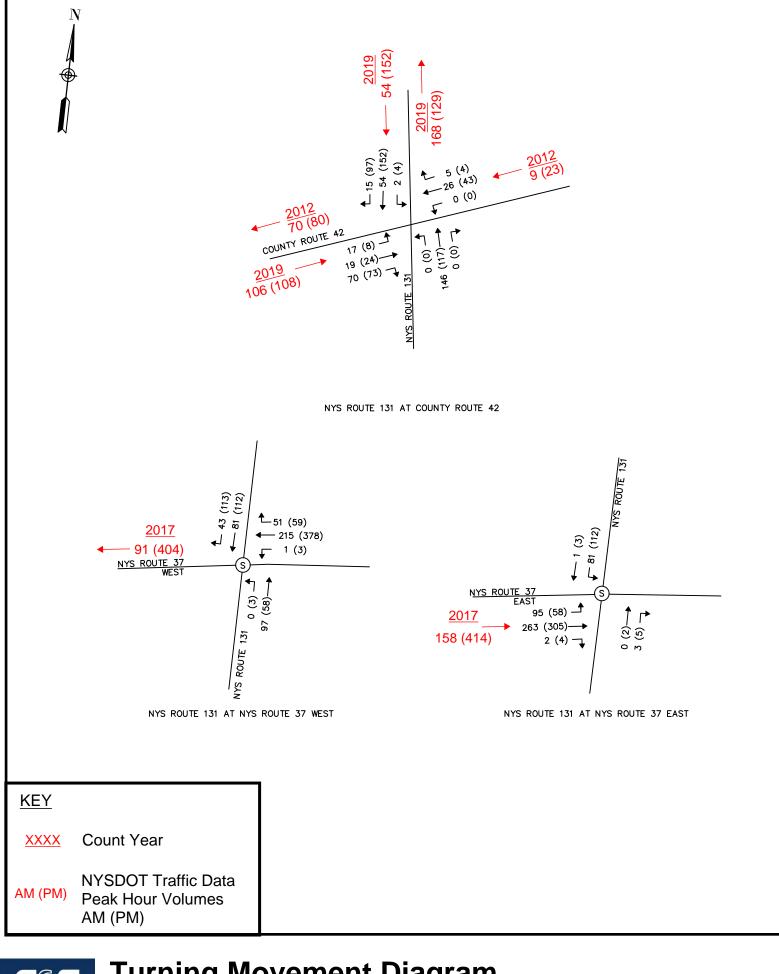
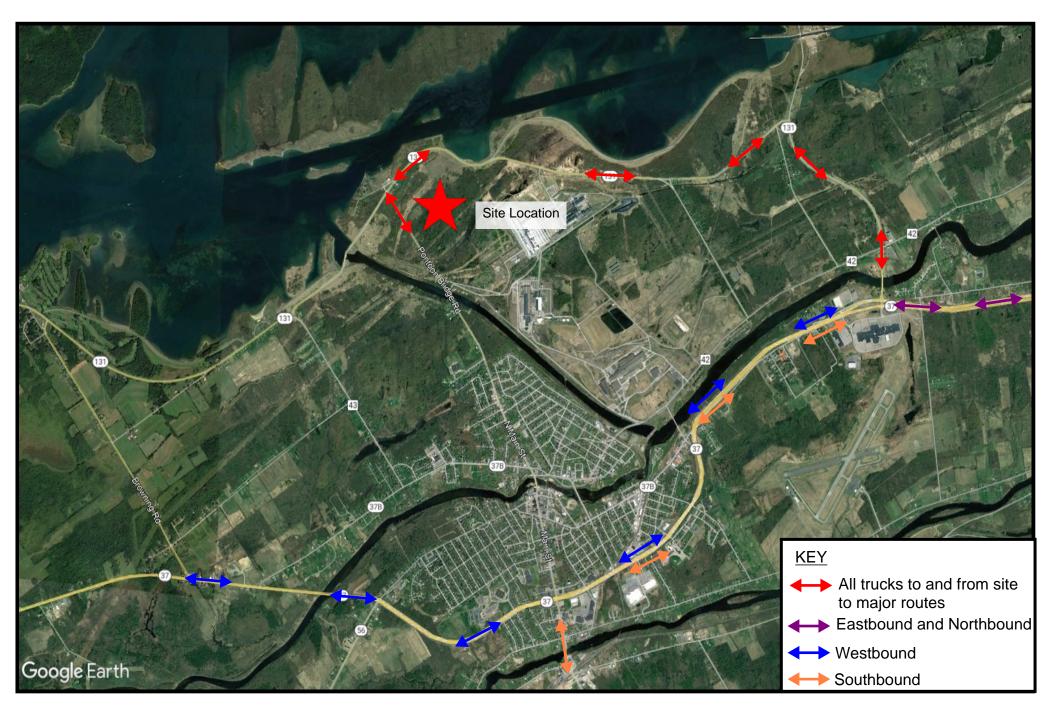

NYS Route 131 a	t NYS Route 37 Eas	t					
Northbound	Thru	B (19.5)	0.00	5	B (19.0)	0.00	5
Northbound	Right	A (0.0)	0.01	0	A (0.0)	0.01	0
Southbound	Left/Thru/Right	A (5.0)	0.15	6	A (4.3)	0.00	0
	Left	B (16.1)	0.09	43	B (16.3)	0.10	49
Eastbound	Thru	B (15.4)	0.25	84	B (15.5)	0.25	85
	Right	A (0.0)	0.01	0	A (0.0)	0.01	0
	Intersection	B (12.7)	-	-	B (15.2)	-	-
NYS Route 37 at	t Main Street						
Northbound	Left	D (49.5)	0.47	103	D (49.7)	0.47	103
Northbourid	Thru/Right	D (44.5)	0.79	309	D (44.8)	0.79	315
Southbound	Left	D (50.2)	0.53	127	D (50.3)	0.53	127
Southbound	Thru/Right	D (40.4)	0.72	293	D (40.0)	0.72	293
Eastbound	Left	D (48.0)	0.28	61	D (48.2)	0.28	61
Eastbound	Thru/Right	C (25.8)	0.26	86	C (26.5)	0.27	88
Westbound	Left	D (47.5)	0.61	168	D (47.8)	0.62	174
Westbound	Thru/Right	C (21.2)	0.23	105	C (21.5)	0.24	108
	Intersection	D (37.9)	-	-	D (38.1)	-	-
NYS Route 37 at	Andrews Street an	d NYS Route	56				
Northbound	Left	C (23.0)	0.33	90	C (23.0)	0.33	90
Northbourid	Thru/Right	B (16.6)	0.31	109	B (16.6)	0.32	111
Southbound	Left	A (8.9)	0.10	23	A (8.9)	0.10	23
30001000000	Thru/Right	C (20.2)	0.35	89	C (20.2)	0.35	89
Eastbound	Left/Thru	C (20.1)	0.35	98	C (20.2)	0.36	100
Lastbourid	Right	A (0.2)	0.07	0	A (0.2)	0.07	0
Westbound	Left/Thru/Right	B (19.8)	0.47	138	B (19.8)	0.47	138
	Intersection	B (18.3)	-	-	B (18.3)	-	-

Table 8: Intersection LOS Analysis PM Peak Continued

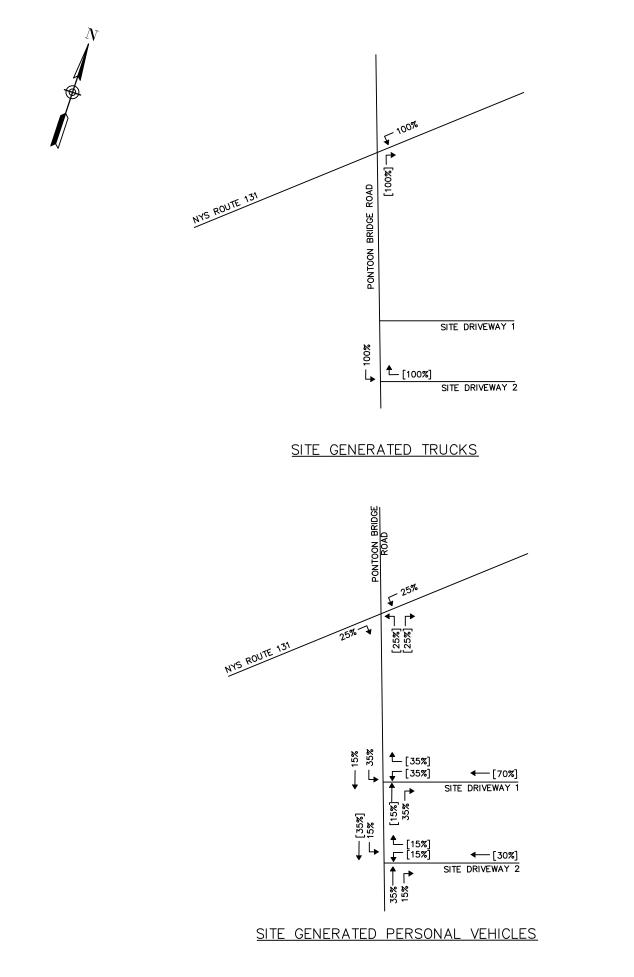
Appendix A Figures

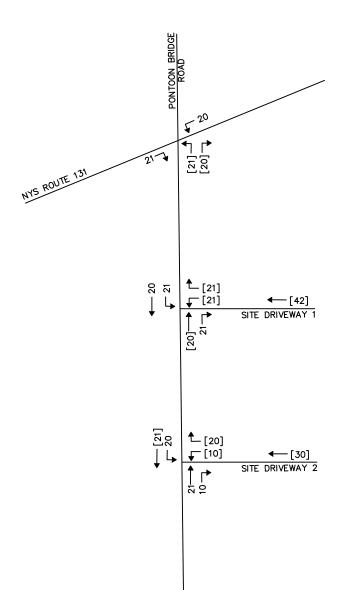


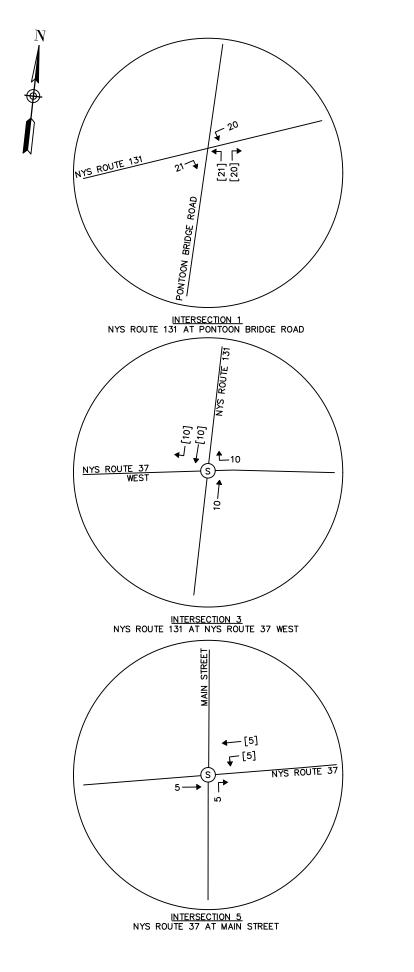

Existing (2022)

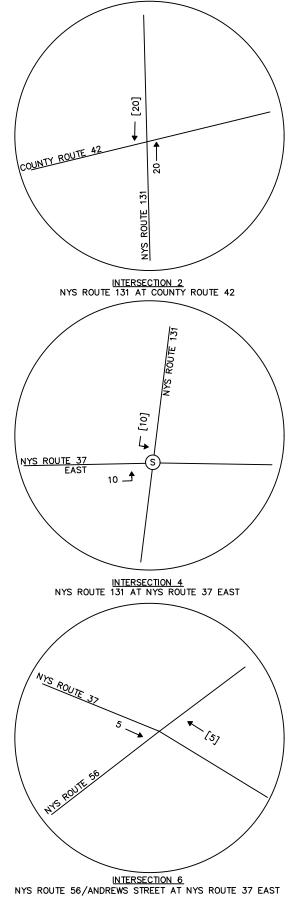
Turning Movement Diagram

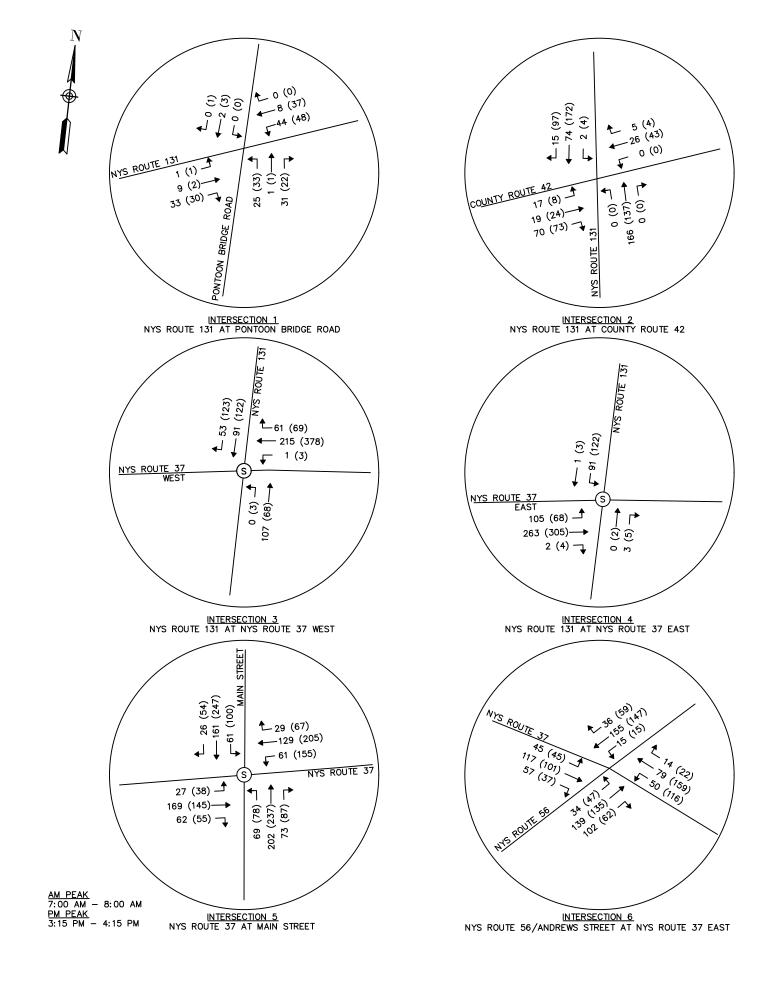
Turning Movement Diagram Balancing Volumes From Detour


COMPANIES


Proposed Truck Travel Route






NOTE: TRIPS ARE THE SAME FOR THE AM AND PM PEAK HOURS

Turning Movement Diagram Proposed (2026)

Appendix B Traffic Data 4.8

Intersection

Int Delay, s/veh

Movement NBL NBT NBR SBL SBT SBR NEL NET NER SWL SWT SWF
Lane Configurations 💠 🛟 🛟
Traffic Vol, veh/h 4 1 11 0 2 0 1 9 12 24 8 0
Future Vol, veh/h 4 1 11 0 2 0 1 9 12 24 8 0
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0
Sign Control Stop Stop Stop Stop Stop Stop Free Free Free Free Free Free
RT Channelized None None None
Storage Length
Veh in Median Storage, # - 0 0 0 0 0
Grade, % - 0 0 0 0
Peak Hour Factor 75 75 75 75 75 75 75 75 75 75 75 75 75
Heavy Vehicles, % 7 20 6 0 17 0 100 18 0 0 20 0
Mvmt Flow 5 1 15 0 3 0 1 12 16 32 11 0

Major/Minor	Minor1		Ν	/linor2		1	Major1		Ν	/lajor2			
Conflicting Flow All	99	97	20	105	105	11	11	0	0	28	0	0	
Stage 1	22	22	-	75	75	-	-	-	-	-	-	-	
Stage 2	77	75	-	30	30	-	-	-	-	-	-	-	
Critical Hdwy	7.17	6.7	6.26	7.1	6.67	6.2	5.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.17	5.7	-	6.1	5.67	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.17	5.7	-	6.1	5.67	-	-	-	-	-	-	-	
Follow-up Hdwy	3.563	4.18	3.354	3.5	4.153	3.3	3.1	-	-	2.2	-	-	
Pot Cap-1 Maneuver	871	760	1046	880	758	1076	1149	-	-	1599	-	-	
Stage 1	984	842	-	939	804	-	-	-	-	-	-	-	
Stage 2	920	799	-	992	841	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	854	744	1046	853	742	1076	1149	-	-	1599	-	-	
Mov Cap-2 Maneuver	854	744	-	853	742	-	-	-	-	-	-	-	
Stage 1	983	841	-	938	788	-	-	-	-	-	-	-	
Stage 2	899	783	-	976	840	-	-	-	-	-	-	-	

Approach	NB	SB	NE	SW	
HCM Control Delay, s	8.8	9.9	0.4	5.5	
HCM LOS	А	А			

Minor Lane/Major Mvmt	NEL	NET	NER	NBLn1	SBLn1	SWL	SWT	SWR
Capacity (veh/h)	1149	-	-	967	742	1599	-	-
HCM Lane V/C Ratio	0.001	-	-	0.022	0.004	0.02	-	-
HCM Control Delay (s)	8.1	0	-	8.8	9.9	7.3	0	-
HCM Lane LOS	А	А	-	Α	Α	Α	А	-
HCM 95th %tile Q(veh)	0	-	-	0.1	0	0.1	-	-

7.8

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	EDL		EDK	VVDL		VVDR	INDL		NDK	SDL	SDI	SDK	
Lane Configurations		- 4 2-			- 4 >			- 4 >			- 4 >		
Traffic Vol, veh/h	17	19	0	0	26	5	1	1	1	2	0	15	
Future Vol, veh/h	17	19	0	0	26	5	1	1	1	2	0	15	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	73	73	73	73	73	73	73	73	73	73	92	92	
Heavy Vehicles, %	19	25	0	0	19	0	0	0	0	0	0	8	
Mvmt Flow	23	26	0	0	36	7	1	1	1	3	0	16	

Major/Minor	Minor2		1	/linor1		ľ	Major1		Ν	/lajor2			
Conflicting Flow All	39	18	8	31	26	2	16	0	0	2	0	0	
Stage 1	14	14	-	4	4	-	-	-	-	-	-	-	
Stage 2	25	4	-	27	22	-	-	-	-	-	-	-	
Critical Hdwy	7.29	6.75	6.2	7.1	6.69	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Follow-up Hdwy	3.671	4.225	3.3	3.5	4.171	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	924	833	1080	982	835	1088	1615	-	-	1634	-	-	
Stage 1	964	840	-	1024	860	-	-	-	-	-	-	-	
Stage 2	951	849	-	996	844	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	886	831	1080	956	832	1088	1615	-	-	1634	-	-	
Mov Cap-2 Maneuver	886	831	-	956	832	-	-	-	-	-	-	-	
Stage 1	963	838	-	1023	859	-	-	-	-	-	-	-	
Stage 2	905	848	-	963	842	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	9.5	9.4	2.4	1	
HCM LOS	А	А			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1615	-	-	856	865	1634	-	-
HCM Lane V/C Ratio	0.001	-	-	0.058	0.049	0.002	-	-
HCM Control Delay (s)	7.2	0	-	9.5	9.4	7.2	0	-
HCM Lane LOS	А	А	-	А	А	Α	Α	-
HCM 95th %tile Q(veh)	0	-	-	0.2	0.2	0	-	-

Existing AM Peak 13: NYS Route 131 & NYS Route 37 West

01/31/2023

	≯	-	\mathbf{F}	4	+	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				<u>ک</u>	<u></u>	1	ľ	•			•	*
Traffic Volume (vph)	0	0	0	1	215	0	3	Ō	0	0	Ō	0
Future Volume (vph)	0	0	0	1	215	0	3	0	0	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	275		0	0		0	0		0
Storage Lanes	0		0	1		1	1		0	0		1
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	0	0	0	1805	3195	1900	1805	1900	0	0	1900	1900
Flt Permitted	-	-		0.950			0.950			-		
Satd. Flow (perm)	0	0	0	1805	3195	1900	1805	1900	0	0	1900	1900
Right Turn on Red	-	-	Yes			Yes			Yes	-		Yes
Satd. Flow (RTOR)												
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		453			483			228			523	
Travel Time (s)		10.3			11.0			5.2			11.9	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles (%)	0%	0%	0%	0%	13%	0%	0%	0%	0%	0%	0%	0%
Shared Lane Traffic (%)	070	070	070	070	1070	070	070	070	0 /0	070	070	070
Lane Group Flow (vph)	0	0	0	1	259	0	4	0	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	12	Ngn	Leit	12	Ngn	Leit	12	Ngn	Leit	12	Right
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	15		9	10	2	9	1	2	9	15	2	1
Detector Template				Left	∠ Thru	Right	Left	Z			∠ Thru	Dight
Leading Detector (ft)				20	100	20	20	100			100	Right 20
Trailing Detector (ft)				20	0	20	20	001			001	20
Detector 1 Position(ft)				0	0	0	0	0			0	0
Detector 1 Size(ft)				20	6	20	20	6			6	20
Detector 1 Type				CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex			CI+Ex	CI+Ex
Detector 1 Channel					UI+⊏X							
Detector 1 Extend (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
()				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 1 Queue (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 1 Delay (s)				0.0		0.0	0.0					0.0
Detector 2 Position(ft)					94 6			94 6			94 6	
Detector 2 Size(ft)												
Detector 2 Type					Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel					0.0			0.0			0.0	
Detector 2 Extend (s)				D	0.0	D	0.11	0.0			0.0	Dut
Turn Type				Perm	NA	Perm	Split	4			_	Prot
Protected Phases					1		4	4			3	3
Permitted Phases				1	4	1		4				
Detector Phase				1	1	1	4	4			3	3
Switch Phase												_
Minimum Initial (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0

Lanes, Volumes, Timings C&S Engineers

Existing AM Peak 13: NYS Route 131 & NYS Route 37 West

	۶	-	\mathbf{F}	4	+	•	1	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)				12.0	12.0	12.0	12.0	12.0			12.0	12.0
Total Split (s)				20.0	20.0	20.0	20.0	20.0			20.0	20.0
Total Split (%)				33.3%	33.3%	33.3%	33.3%	33.3%			33.3%	33.3%
Maximum Green (s)				13.0	13.0	13.0	13.0	13.0			13.0	13.0
Yellow Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
All-Red Time (s)				2.0	2.0	2.0	2.0	2.0			2.0	2.0
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)				7.0	7.0	7.0	7.0	7.0			7.0	7.0
Lead/Lag							Lag	Lag			Lead	Lead
Lead-Lag Optimize?							Yes	Yes			Yes	Yes
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Recall Mode				None	None	None	None	None			None	None
Act Effct Green (s)				15.4	15.4		6.9					
Actuated g/C Ratio				0.75	0.75		0.33					
v/c Ratio				0.00	0.11		0.01					
Control Delay				7.0	4.9		15.3					
Queue Delay				0.0	0.0		0.0					
Total Delay				7.0	4.9		15.3					
LOS				А	А		В					
Approach Delay					4.9			15.3				
Approach LOS					А			В				
Queue Length 50th (ft)				0	0		0					
Queue Length 95th (ft)				2	45		8					
Internal Link Dist (ft)		373			403			148			443	
Turn Bay Length (ft)				275								
Base Capacity (vph)				1420	2513		1420					
Starvation Cap Reductn				0	0		0					
Spillback Cap Reductn				0	0		0					
Storage Cap Reductn				0	0		0					
Reduced v/c Ratio				0.00	0.10		0.00					
Intersection Summary												
Area Type: Oth	er											
Cycle Length: 60												
Actuated Cycle Length: 20.6												
Natural Cycle: 40												
Control Type: Semi Act-Uncoord	d											
Maximum v/c Ratio: 0.13												
Intersection Signal Delay: 5.0				Ir	ntersectio	n LOS: A						
Intersection Capacity Utilization	31.8%			10	CU Level	of Service	eΑ					
Analysis Period (min) 15												
Splits and Phases: 13: NYS F	Douto 12	21 & NIVC	Pouto 3	7 Waat								
opino anu rhases. 13. NTS r				01 11651								

#13 #16	#13 #16	#13 #16	
20 s	20 s	20 s	

Existing AM Peak 16: NYS Route 131 & NYS Route 37 East

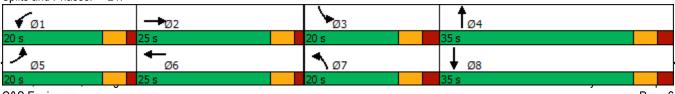
	≯	+	*	4	Ļ	•	•	1	*	*	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	††	1					1	1		4†	
Traffic Volume (vph)	2	263	2	0	0	0	0	Ō	3	0	1	0
Future Volume (vph)	2	263	2	0	0	0	0	0	3	0	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		0	0		0	0		0	0		0
Storage Lanes	1		1	0		0	0		1	0		0
Taper Length (ft)	25			25		•	25		·	25		
Satd. Flow (prot)	1805	3312	1615	0	0	0	0	1900	1615	0	3610	0
Flt Permitted	0.950	0012	1010	Ū	Ū	Ū	Ŭ			Ŭ	0010	Ŭ
Satd. Flow (perm)	1805	3312	1615	0	0	0	0	1900	1615	0	3610	0
Right Turn on Red	1000	0012	Yes	Ū	Ū	Yes	Ŭ	1000	Yes	v	0010	Yes
Satd. Flow (RTOR)			200			100			617			100
Link Speed (mph)		30	200		30			30	017		30	
Link Distance (ft)		479			493			324			228	
Travel Time (s)		10.9			11.2			7.4			5.2	
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles (%)	0.79	9%	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Shared Lane Traffic (%)	0 /0	970	0 /0	0 /0	0 /0	0 /0	0 /0	0 /0	0 /0	0 /0	0 /0	0 /0
()	3	333	3	0	0	0	0	0	4	0	1	0
Lane Group Flow (vph) Enter Blocked Intersection			No								1	-
	No	No		No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	4.00	4 00	4.00	4 0 0	4 00	4 00	4.00	4.00	4.00	4 00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	•	9	15		9	15	•	9	15		9
Number of Detectors	1	2	1					2	1	1	2	
Detector Template	Left	Thru	Right					Thru	Right	Left	Thru	
Leading Detector (ft)	20	100	20					100	20	20	100	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Detector 1 Position(ft)	0	0	0					0	0	0	0	
Detector 1 Size(ft)	20	6	20					6	20	20	6	
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex					Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94						94			94	
Detector 2 Size(ft)		6						6			6	
Detector 2 Type		Cl+Ex						CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0						0.0			0.0	
Turn Type	Split	NA	Prot						Prot		NA	
Protected Phases	. 1	1	1					4	4	3	3	
Permitted Phases												
Detector Phase	1	1	1					4	4	3	3	
Switch Phase											-	
Minimum Initial (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
	0.0	0.0	0.0					0.0	0.0	0.0	0.0	

Lanes, Volumes, Timings C&S Engineers

Existing AM Peak 16: NYS Route 131 & NYS Route 37 East

	٦	-	\mathbf{F}	∢	+	•	•	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	12.0	12.0	12.0					12.0	12.0	12.0	12.0	
Total Split (s)	20.0	20.0	20.0					20.0	20.0	20.0	20.0	
Total Split (%)	33.3%	33.3%	33.3%					33.3%	33.3%	33.3%	33.3%	
Maximum Green (s)	13.0	13.0	13.0					13.0	13.0	13.0	13.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0					7.0	7.0		7.0	
Lead/Lag								Lag	Lag	Lead	Lead	
Lead-Lag Optimize?								Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					None	None	None	None	
Act Effct Green (s)	15.4	15.4	15.4						6.9		6.9	
Actuated g/C Ratio	0.75	0.75	0.75						0.33		0.33	
v/c Ratio	0.00	0.13	0.00						0.00		0.00	
Control Delay	7.0	4.8	0.0						0.0		9.0	
Queue Delay	0.0	0.0	0.0						0.0		0.0	
Total Delay	7.0	4.8	0.0						0.0		9.0	
LOS	А	А	А						А		А	
Approach Delay		4.8									9.0	
Approach LOS		А									А	
Queue Length 50th (ft)	0	0	0						0		0	
Queue Length 95th (ft)	4	53	0						0		2	
Internal Link Dist (ft)		399			413			244			148	
Turn Bay Length (ft)	150											
Base Capacity (vph)	1420	2605	1313						1402		2840	
Starvation Cap Reductn	0	0	0						0		0	
Spillback Cap Reductn	0	0	0						0		0	
Storage Cap Reductn	0	0	0						0		0	
Reduced v/c Ratio	0.00	0.13	0.00						0.00		0.00	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 20.6	6											
Natural Cycle: 40												
Control Type: Semi Act-Unc	coord											
Maximum v/c Ratio: 0.13												
Intersection Signal Delay: 4	.7			Ir	ntersection	n LOS: A						
Intersection Capacity Utiliza	ition 31.8%	ı.		IC	CU Level	of Service	А					
Analysis Period (min) 15												
Splits and Phases: 16: N	YS Route 1	31 & NY	S Route 3	7 East				#10 #16				

#13 #16	#13 #16	#13 #16	
20 s	20 s	20 s	


Existing AM Peak 21:

	۶	-	\mathbf{r}	4	+	•	•	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	∱1 ≱		7	∱1 ≱		<u>۲</u>	eî 🕺		<u>۲</u>	ef 👘	
Traffic Volume (vph)	27	164	62	56	124	29	69	202	68	61	161	26
Future Volume (vph)	27	164	62	56	124	29	69	202	68	61	161	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	200		0	150		0	0		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	1752	3025	0	1421	3105	0	1752	1757	0	1671	1834	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1752	3025	0	1421	3105	0	1752	1757	0	1671	1834	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		48			25			17			8	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		546			510			451			340	
Travel Time (s)		12.4			11.6			10.3			7.7	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles (%)	3%	18%	5%	27%	13%	13%	3%	1%	13%	8%	1%	4%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	31	260	0	64	176	0	79	310	0	70	215	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	Ŭ		12	Ű		12	Ŭ		12	Ŭ
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases												
Detector Phase	5	2		1	6		7	4		3	8	
Switch Phase												

Lanes, Volumes, Timings C&S Engineers

Minimum Split (s) 23.1 20.0 10.1 24.1 11.1 24.1 Total Split (s) 20.0 25.0 20.0 25.0 20.0% 35.0 Total Split (%) 20.0% 25.0% 20.0% 25.0% 20.0% 35.0 Maximum Green (s) 14.9 19.9 14.9 19.9 13.9 28.9 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Lost Time Adjust (s) 5.1 5.1 5.1 5.1 6.1 6.1 Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None Max None Max None None Walk Time (s) 7.0 7.0 7.0 7.0 Flash Don tWalk (s) 13.0		≯	-	\mathbf{r}	4	←	•	1	Ť	1	1	Ļ	~
Total Split (s) 20.0 25.0 20.0 25.0% 20.0% 25.0% 20.0% 25.0% 20.0% 35.0% Maximum Green (s) 14.9 19.9 14.9 19.9 13.9 28.9 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.6 All-Red Time (s) 1.5 1.5 1.5 1.5 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.1 5.1 5.1 5.1 6.1 6.1 Lead/Lag Lead Lag Lead Lag Lead Lag Lead/Lag Optimize? Yes	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Split (%) 20.0% 25.0% 20.0% 25.0% 20.0% 35.0% Maximum Green (s) 14.9 19.9 14.9 19.9 13.9 28.9 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.6 All-Red Time (s) 1.5 1.5 1.5 2.5 2.5 Lost Time (s) 5.1 5.1 5.1 6.1 6.1 6.1 Lead/Lag Lead Lag Lead Lag Lead Lag Lead Lag Lead Lag Lead/Lag Lead Lag Lead/Lag Lead Lag Lead/Lag Lead/Lag Lag Lead/Lag Lead/Lag Lag Lead/Lag Lead/Lag Lag Lead/Lag Lag Lead/Lag Lag Lead/Lag Lag	Minimum Split (s)	23.1	20.0		10.1	24.1		11.1	24.1		11.1	27.1	
Maximum Green (s) 14.9 19.9 14.9 19.9 13.9 28.9 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 All-Red Time (s) 1.5 1.5 1.5 1.5 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.1 5.1 5.1 5.1 6.1 6.1 Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None Max None Max None None None Walk (me (s) 7.0 7.0 7.0 7.0 7.0 1.6 1.8 2.2 9.3 2.8.5 9.3 1.8.2 2.2 4.1.5 1.4 4.0.4 36.0 1.5 0.6 0.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Total Split (s)	20.0	25.0		20.0	25.0		20.0	35.0		20.0	35.0	
Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 All-Red Time (s) 1.5 1.5 1.5 1.5 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.1 5.1 5.1 6.1 6.1 6.1 Lead-Lag Optimize? Yes Yes<	Total Split (%)	20.0%	25.0%		20.0%	25.0%		20.0%	35.0%		20.0%	35.0%	
All-Red Time (s) 1.5 1.5 1.5 1.5 2.5 2.5 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.1 5.1 5.1 5.1 6.1 6.1 Lead/Lag Lead Lag Lead Lag Lead Lag Lead Lag Lead/Lag Optimize? Yes	Maximum Green (s)										13.9	28.9	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.1 5.1 5.1 5.1 6.1 6.1 Lead/Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None Max None Max None None Walk Time (s) 7.0 7.0 7.0 7.0 Protestrian Calls (#/n) 0 0 0 Pedestrian Calls (#/n) 0<	Yellow Time (s)	3.6	3.6		3.6			3.6	3.6		3.6	3.6	
Total Lost Time (s) 5.1 5.1 5.1 5.1 5.1 6.1 6.1 Lead/Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode None Max None Max None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.0 12.0 9.0 9.0 Pedestrian Calls (#/hr) 0 0 0 0 ActLafed G/C Ratio 0.10 0.29 0.12 0.38 0.12 0.24 v/c Ratio 0.18 0.28 0.36 0.15 0.36 0.70 Control Delay 40.2 23.1 41.5 19.4 40.4 36.0 20 20 25.3 36.9 29 25.3 36.9 23 23 24.9 22 36 133 23 <	All-Red Time (s)				1.5			2.5			2.5	2.5	
Lead/Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes Yes <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td>0.0</td> <td></td>					0.0			0.0			0.0	0.0	
Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Vehicle Extension (s) 3.0 <	Total Lost Time (s)	5.1	5.1		5.1	5.1		6.1	6.1		6.1	6.1	
Vehicle Extension (s) 3.0 Protectrian forms Protectrian 1.10 9.0 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Recall Mode None Max None Max None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 13.0 12.0 9.0 9.0 Pedestrian Calls (#/hr) 0 0 0 0 Act Effect Green (s) 7.4 22.0 9.3 28.5 9.3 18.2 Actuated g/C Ratio 0.10 0.29 0.12 0.38 0.12 0.24 v/c Ratio 0.18 0.28 0.36 0.15 0.36 0.70 Control Delay 40.2 23.1 41.5 19.4 40.4 36.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 LOS D C D B D D Approach LOS C C D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 466 43	Lead-Lag Optimize?										Yes	Yes	
Walk Time (s) 7.0 7.0 7.0 Flash Dont Walk (s) 13.0 12.0 9.0 Pedestrian Calls (#/hr) 0 0 0 Act atfot Green (s) 7.4 22.0 9.3 28.5 9.3 18.2 Actuated g/C Ratio 0.10 0.29 0.12 0.38 0.12 0.24 v/c Ratio 0.18 0.28 0.36 0.15 0.36 0.70 Control Delay 40.2 23.1 41.5 19.4 40.4 36.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay 40.2 23.1 41.5 19.4 40.4 36.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 LOS D C D B D D D Approach LOS C C D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 45 94 75 65 87	Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Flash Dont Walk (s) 13.0 12.0 9.0 Pedestrian Calls (#hr) 0 0 0 Act Effct Green (s) 7.4 22.0 9.3 28.5 9.3 18.2 Actuated g/C Ratio 0.10 0.29 0.12 0.38 0.12 0.24 v/c Ratio 0.18 0.28 0.36 0.15 0.36 0.70 Control Delay 40.2 23.1 41.5 19.4 40.4 36.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 40.2 23.1 41.5 19.4 40.4 36.0 LOS D C D B D D Approach LOS C C D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 466 430 371 Tur Bay Length (ft) 200 150 Base Capacity (vph)	Recall Mode	None			None			None	None		None	None	
Pedestrian Calls (#/hr) 0 0 0 Act Effct Green (s) 7.4 22.0 9.3 28.5 9.3 18.2 Actuated g/C Ratio 0.10 0.29 0.12 0.38 0.12 0.24 v/c Ratio 0.18 0.28 0.36 0.15 0.36 0.70 Control Delay 40.2 23.1 41.5 19.4 40.4 36.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 40.2 23.1 41.5 19.4 40.4 36.0 LOS D C D B D D Approach Delay 24.9 25.3 36.9 Approach LOS C C D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 200 200 150	Walk Time (s)		7.0			7.0			7.0			7.0	
Act Effct Green (s) 7.4 22.0 9.3 28.5 9.3 18.2 Actuated g/C Ratio 0.10 0.29 0.12 0.38 0.12 0.24 v/c Ratio 0.18 0.28 0.36 0.15 0.36 0.70 Control Delay 40.2 23.1 41.5 19.4 40.4 36.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 40.2 23.1 41.5 19.4 40.4 36.0 LOS D C D B D D D Approach Delay 24.9 25.3 36.9 Approach LOS C C D D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 50th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 466 430 371 Turn Bay Length (ft) 200 150 Base Capacity (vph) 383 922 311 1196 357 755 <td< td=""><td>Flash Dont Walk (s)</td><td></td><td>13.0</td><td></td><td></td><td>12.0</td><td></td><td></td><td>9.0</td><td></td><td></td><td>14.0</td><td></td></td<>	Flash Dont Walk (s)		13.0			12.0			9.0			14.0	
Actuated g/C Ratio 0.10 0.29 0.12 0.38 0.12 0.24 v/c Ratio 0.18 0.28 0.36 0.15 0.36 0.70 Control Delay 40.2 23.1 41.5 19.4 40.4 36.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 40.2 23.1 41.5 19.4 40.4 36.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 40.2 23.1 41.5 19.4 40.4 36.0 LOS D C D B D D Approach LOS C C D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 466 430 371 Turn Bay Length (ft) 200 150 Base Capacity (vph) 383 922 311 1196 357 <td>Pedestrian Calls (#/hr)</td> <td></td> <td>0</td> <td></td>	Pedestrian Calls (#/hr)											0	
v/c Ratio 0.18 0.28 0.36 0.15 0.36 0.70 Control Delay 40.2 23.1 41.5 19.4 40.4 36.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 40.2 23.1 41.5 19.4 40.4 36.0 LOS D C D B D D Approach Delay 24.9 25.3 36.9 Approach LOS C C D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 466 430 371 371 Turn Bay Length (ft) 200 200 150 Base Capacity (vph) 383 922 311 1196 357 755 Starvation Cap Reductn 0 0 0 0 0 0	Act Effct Green (s)					28.5		9.3			9.1	18.0	
Control Delay 40.2 23.1 41.5 19.4 40.4 36.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 40.2 23.1 41.5 19.4 40.4 36.0 LOS D C D B D D Approach Delay 24.9 25.3 36.9 Approach LOS C C D D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 466 430 371 111 1196 357 755 Starvation Cap Reductn 0		0.10	0.29		0.12	0.38		0.12	0.24		0.12	0.24	
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 40.2 23.1 41.5 19.4 40.4 36.0 LOS D C D B D D Approach Delay 24.9 25.3 36.9 Approach LOS C C D D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 466 430 371 TUR Bay Length (ft) 200 150 Base Capacity (vph) 383 922 311 1196 357 755 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.08 0.28 0.21 0.15 0.22 <t< td=""><td>v/c Ratio</td><td>0.18</td><td></td><td></td><td>0.36</td><td></td><td></td><td>0.36</td><td></td><td></td><td>0.35</td><td>0.48</td><td></td></t<>	v/c Ratio	0.18			0.36			0.36			0.35	0.48	
Total Delay 40.2 23.1 41.5 19.4 40.4 36.0 LOS D C D B D D Approach Delay 24.9 25.3 36.9 Approach LOS C C D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 466 430 371 Turn Bay Length (ft) 200 150 Base Capacity (vph) 383 922 311 1196 357 755 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.08 0.28 0.21 0.15 0.22 0.41	•										40.6	29.8	
LOS D C D B D D Approach Delay 24.9 25.3 36.9 Approach LOS C C D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 466 430 371 Turn Bay Length (ft) 200 150 Base Capacity (vph) 383 922 311 1196 357 755 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.08 0.28 0.21 0.15 0.22 0.41 Intersection Summary Z Z Z Z Z Z Z Z	Queue Delay										0.0	0.0	
Approach Delay 24.9 25.3 36.9 Approach LOS C D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 466 430 371 Turn Bay Length (ft) 200 200 150 Base Capacity (vph) 383 922 311 1196 357 755 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0								40.4			40.6	29.8	
Approach LOS C C D Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 466 430 371 371 Turn Bay Length (ft) 200 200 150 355 357 755 351 Base Capacity (vph) 383 922 311 1196 357 755 355 Starvation Cap Reductn 0		D			D			D			D	С	
Queue Length 50th (ft) 14 43 30 22 36 133 Queue Length 95th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 466 430 371 Turn Bay Length (ft) 200 200 150 Base Capacity (vph) 383 922 311 1196 357 755 Starvation Cap Reductn 0												32.5	
Queue Length 95th (ft) 45 94 75 65 87 234 Internal Link Dist (ft) 466 430 371 Turn Bay Length (ft) 200 150 Base Capacity (vph) 383 922 311 1196 357 755 Starvation Cap Reductn 0 1 0 1 0												С	
Internal Link Dist (ft) 466 430 371 Turn Bay Length (ft) 200 150 383 922 311 1196 357 755 Base Capacity (vph) 383 922 311 1196 357 755 Starvation Cap Reductn 0 1 1 1 1 1 1 1											32	88	
Turn Bay Length (ft) 200 150 Base Capacity (vph) 383 922 311 1196 357 755 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.08 0.28 0.21 0.15 0.22 0.41 Intersection Summary		45			75			87			80	163	
Base Capacity (vph) 383 922 311 1196 357 755 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.08 0.28 0.21 0.15 0.22 0.41 Intersection Summary	()		466			430			371			260	
Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 <td></td>													
Spillback Cap Reductn 0											341	782	
Storage Cap Reductn 0						•					0	0	
Reduced v/c Ratio0.080.280.210.150.220.41Intersection SummaryArea Type:OtherCycle Length: 100Colspan="4">Cycle Length: 100Actuated Cycle Length: 74.9Colspan="4">Cycle: 90Natural Cycle: 90Control Type: Semi Act-UncoordMaximum v/c Ratio: 0.70Colspan="4">Colspan="4"Colspan="4">Colspan="4">Colspan="4"Colspa								-			0	0	
Intersection Summary Area Type: Other Cycle Length: 100 Actuated Cycle Length: 74.9 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.70	· ·		-			-		-	-		0	0	
Area Type: Other Cycle Length: 100 0 Actuated Cycle Length: 74.9 0 Natural Cycle: 90 0 Control Type: Semi Act-Uncoord 0 Maximum v/c Ratio: 0.70 0	Reduced v/c Ratio	0.08	0.28		0.21	0.15		0.22	0.41		0.21	0.27	
Cycle Length: 100 Actuated Cycle Length: 74.9 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.70	Intersection Summary												
Cycle Length: 100 Actuated Cycle Length: 74.9 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.70	Area Type:	Other											
Actuated Cycle Length: 74.9 Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.70													
Natural Cycle: 90 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.70		4.9											
Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.70													
Maximum v/c Ratio: 0.70		Incoord											
Intersection Signal Delay: 30.6 Intersection LOS: C	Intersection Signal Delay:	: 30.6			lr	ntersectior	1 LOS: C						
Intersection Capacity Utilization 50.1% ICU Level of Service A)										
Analysis Period (min) 15													

Splits and Phases: 21:

Existing AM Peak 26: NYS Route 37 & NYS Route 56/Andrews Street

01/31/2023

	۶	+	\mathbf{F}	4	+	*	•	Ť	*	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		स	1		4		ሻ	4Î		ሻ	4Î	
Traffic Volume (vph)	34	139	102	15	155	36	50	74	14	45	112	57
Future Volume (vph)	34	139	102	15	155	36	50	74	14	45	112	57
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		175	0		0	0		150	125		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	0	1710	1583	0	1655	0	1703	1734	0	1597	1664	0
Flt Permitted		0.901			0.954		0.950			0.695		
Satd. Flow (perm)	0	1556	1583	0	1586	0	1703	1734	0	1169	1664	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			121		12			12			32	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		490			481			361			360	
Travel Time (s)		11.1			10.9			8.2			8.2	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	12%	2%	4%	15%	0%	6%	6%	12%	13%	4%	17%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	186	110	0	222	0	54	95	0	48	181	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	Ŭ		0	Ŭ		12	Ű		12	Ŭ
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NA		Prot	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8	•		-	2		6	-	
Detector Phase	4	4	4	8	8		5	2		1	6	
Switch Phase				<u> </u>	•		-	_			-	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
- \-/												

Lanes, Volumes, Timings C&S Engineers

	٠		~		-		•	+	*	1	1	1
	-		•	•	MOT		1	I	/	-	▼ 0DT	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Vinimum Split (s)	24.5	24.5	24.5	24.5	24.5		11.5	24.5		11.5	24.5	
Total Split (s)	30.0	30.0	30.0	30.0	30.0		20.0	40.0		20.0	40.0	
Fotal Split (%)	33.3%	33.3%	33.3%	33.3%	33.3%		22.2%	44.4%		22.2%	44.4%	
Maximum Green (s)	23.5	23.5	23.5	23.5	23.5		13.5	33.5		13.5	33.5	
(ellow Time (s)	4.0	4.0	4.0	4.0	4.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5		1.5	1.5		1.5	1.5	
ost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
otal Lost Time (s)		6.5	6.5		6.5		6.5	6.5		6.5	6.5	
.ead/Lag							Lead	Lag		Lead	Lag	
ead-Lag Optimize?							Yes	Yes		Yes	Yes	
ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None		None	None		None	None	
Act Effct Green (s)		14.3	14.3		14.4		9.9	15.0		15.4	12.8	
ctuated g/C Ratio		0.35	0.35		0.35		0.24	0.37		0.38	0.31	
/c Ratio		0.34	0.17		0.39		0.13	0.15		0.09	0.34	
Control Delay		18.2	4.5		17.8		21.8	13.6		8.5	16.7	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
otal Delay		18.2	4.5		17.8		21.8	13.6		8.5	16.7	
.OS		В	А		В		С	В		А	В	
Approach Delay		13.1			17.8			16.6			15.0	
Approach LOS		В			В			В			В	
Queue Length 50th (ft)		45	0		52		14	11		6	37	
Queue Length 95th (ft)		110	27		125		47	56		23	98	
nternal Link Dist (ft)		410			401			281			280	
urn Bay Length (ft)			175							125		
Base Capacity (vph)		968	1030		991		753	1333		867	1284	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.19	0.11		0.22		0.07	0.07		0.06	0.14	
ntersection Summary												
71	Other											
Cycle Length: 90												
Actuated Cycle Length: 41												
latural Cycle: 65												
Control Type: Actuated-Unco /aximum v/c Ratio: 0.39	oordinated											
ntersection Signal Delay: 15	53			lr	ntersection							
					CU Level of							
ntersection Capacity Utilizat Analysis Period (min) 15	uon 52.0%				C Level (5 A					

Ø1	¶ø₂	
20 s	40 s	30 s
▲ Ø5	Ø6	Ø8
20 s	40 s	30 s

Lanes, Volumes, Timings C&S Engineers

4.1

Intersection

Int Delay, s/veh

Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR	
Lane Configurations		÷			\$			÷			÷		
Traffic Vol, veh/h	12	1	2	0	3	1	1	2	9	28	37	0	
Future Vol, veh/h	12	1	2	0	3	1	1	2	9	28	37	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	69	69	69	69	69	69	69	69	69	69	69	69	
Heavy Vehicles, %	0	0	0	0	33	0	0	0	0	4	0	0	
Mvmt Flow	17	1	3	0	4	1	1	3	13	41	54	0	

Major/Minor	Minor1		N	/linor2		ľ	Major1		M	ajor2			
Conflicting Flow All	151	148	10	150	154	54	54	0	0	16	0	0	
Stage 1	12	12	-	136	136	-	-	-	-	-	-	-	
Stage 2	139	136	-	14	18	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.83	6.2	4.1	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.83	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.83	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4.297	3.3	2.2	-	- 2	2.236	-	-	
Pot Cap-1 Maneuver	821	747	1077	822	685	1019	1564	-	-	1589	-	-	
Stage 1	1014	890	-	872	728	-	-	-	-	-	-	-	
Stage 2	869	788	-	1011	822	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	798	726	1077	801	666	1019	1564	-	-	1589	-	-	
Mov Cap-2 Maneuver	798	726	-	801	666	-	-	-	-	-	-	-	
Stage 1	1013	889	-	871	708	-	-	-	-	-	-	-	
Stage 2	839	767	-	1006	821	-	-	-	-	-	-	-	

Approach	NB	SB	NE	SW	
HCM Control Delay, s	9.5	10	0.6	3.2	
HCM LOS	А	В			

Minor Lane/Major Mvmt	NEL	NET	NER	NBLn1	SBLn1	SWL	SWT	SWR
Capacity (veh/h)	1564	-	-	821	729	1589	-	-
HCM Lane V/C Ratio	0.001	-	-	0.026	0.008	0.026	-	-
HCM Control Delay (s)	7.3	0	-	9.5	10	7.3	0	-
HCM Lane LOS	А	А	-	Α	В	Α	Α	-
HCM 95th %tile Q(veh)	0	-	-	0.1	0	0.1	-	-

5.6

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
	EDL		EDN	VVDL		VVDN	INDL		NDN	SDL		JDR	
Lane Configurations		- 4 >			- 4 >			- 4 >			- ()		
Traffic Vol, veh/h	8	24	0	0	43	4	1	1	1	4	0	97	
Future Vol, veh/h	8	24	0	0	43	4	1	1	1	4	0	97	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	49	49	49	73	73	73	73	73	73	73	92	92	
Heavy Vehicles, %	19	25	0	0	19	0	0	0	0	0	0	8	
Mvmt Flow	16	49	0	0	59	5	1	1	1	5	0	105	

Major/Minor	Minor2		1	Minor1		1	Major1		1	Major2			
Conflicting Flow All	99	67	53	91	119	2	105	0	0	2	0	0	
Stage 1	63	63	-	4	4	-	-	-	-	-	-	-	
Stage 2	36	4	-	87	115	-	-	-	-	-	-	-	
Critical Hdwy	7.29	6.75	6.2	7.1	6.69	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Follow-up Hdwy	3.671	4.225	3.3	3.5	4.171	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	844	781	1020	898	741	1088	1499	-	-	1634	-	-	
Stage 1	907	799	-	1024	860	-	-	-	-	-	-	-	
Stage 2	938	849	-	926	769	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	786	778	1020	852	738	1088	1499	-	-	1634	-	-	
Mov Cap-2 Maneuver	786	778	-	852	738	-	-	-	-	-	-	-	
Stage 1	906	797	-	1023	859	-	-	-	-	-	-	-	
Stage 2	868	848	-	866	767	-	-	-	-	-	-	-	
Approach	ED			\\/D			ND			СD			

Approach	EB	WB	NB	SB	
HCM Control Delay, s	10	10.2	2.5	0.4	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	NBR EBLn1WBLn1		SBL	SBT	SBR
Capacity (veh/h)	1499	-	-	780	759	1634	-	-
HCM Lane V/C Ratio	0.001	-	-	0.084	0.085	0.003	-	-
HCM Control Delay (s)	7.4	0	-	10	10.2	7.2	0	-
HCM Lane LOS	А	А	-	В	В	Α	А	-
HCM 95th %tile Q(veh)	0	-	-	0.3	0.3	0	-	-

Existing PM Peak 13: NYS Route 131 & NYS Route 37 West

01/31/2023

	≯	-	\mathbf{F}	4	+	*	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ľ	<u></u>	1	ľ	•			•	1
Traffic Volume (vph)	0	0	0	3	378	0	3	Ō	0	0	Ō	0
Future Volume (vph)	0	0	0	3	378	0	3	0	0	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	275		0	0		0	0		0
Storage Lanes	0		0	1		1	1		0	0		1
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	0	0	0	1805	3195	1900	1805	1900	0	0	1900	1900
Flt Permitted	-	-		0.950			0.950		-	-		
Satd. Flow (perm)	0	0	0	1805	3195	1900	1805	1900	0	0	1900	1900
Right Turn on Red	-	-	Yes			Yes			Yes	-		Yes
Satd. Flow (RTOR)												
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		453			483			228			523	
Travel Time (s)		10.3			11.0			5.2			11.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	0.02	0%	0%	0%	13%	0.02	0.02	0%	0%	0%	0.02	0%
Shared Lane Traffic (%)	070	070	070	070	1070	070	070	070	070	070	070	070
Lane Group Flow (vph)	0	0	0	3	411	0	3	0	0	0	0	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	12	rtight	Lon	12	rtigrit	Lon	12	rugitt	Lon	12	rtigrit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	10		J	1	2	1	1	2	5	10	2	1
Detector Template				Left	Thru	Right	Left	Thru			Thru	Right
Leading Detector (ft)				20	100	20	20	100			100	20
Trailing Detector (ft)				20	0	0	0	0			0	0
Detector 1 Position(ft)				0	0	0	0	0			0	0
Detector 1 Size(ft)				20	6	20	20	6			6	20
Detector 1 Type				CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex			CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 1 Queue (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 1 Delay (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 2 Position(ft)				0.0	94	0.0	0.0	94			94	0.0
Detector 2 Size(ft)					6			6			54 6	
Detector 2 Type					CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)					0.0			0.0			0.0	
Turn Type				Perm	NA	Perm	Split	0.0			0.0	Prot
Protected Phases				Feili		Feili	Spiit 4	4			3	
Protected Phases Permitted Phases				1	1	1	4	4			3	3
				1	4	1	Λ	Λ			3	3
Detector Phase				I	1	I	4	4			3	3
Switch Phase				5.0	5.0	5.0	5 0	5.0			5.0	5.0
Minimum Initial (s)				J.U	0.C	5.0	5.0	5.0			0.C	0.C

Lanes, Volumes, Timings C&S Engineers

Existing PM Peak 13: NYS Route 131 & NYS Route 37 West

	≯	-	\mathbf{F}	4	-	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)				12.0	12.0	12.0	12.0	12.0			12.0	12.0
Total Split (s)				20.0	20.0	20.0	20.0	20.0			20.0	20.0
Total Split (%)				33.3%	33.3%	33.3%	33.3%	33.3%			33.3%	33.3%
Maximum Green (s)				13.0	13.0	13.0	13.0	13.0			13.0	13.0
Yellow Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
All-Red Time (s)				2.0	2.0	2.0	2.0	2.0			2.0	2.0
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)				7.0	7.0	7.0	7.0	7.0			7.0	7.0
Lead/Lag							Lag	Lag			Lead	Lead
Lead-Lag Optimize?							Yes	Yes			Yes	Yes
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Recall Mode				None	None	None	None	None			None	None
Act Effct Green (s)				18.5	18.5		6.8					
Actuated g/C Ratio				0.86	0.86		0.31					
v/c Ratio				0.00	0.15		0.01					
Control Delay				7.0	4.7		10.3					
Queue Delay				0.0	0.0		0.0					
Total Delay				7.0	4.7		10.3					
LOS				А	А		В					
Approach Delay					4.7			10.3				
Approach LOS				-	А		-	В				
Queue Length 50th (ft)				0	0		0					
Queue Length 95th (ft)				5	77		3					
Internal Link Dist (ft)		373			403			148			443	
Turn Bay Length (ft)				275	00.47		1000					
Base Capacity (vph)				1326	2347		1326					
Starvation Cap Reductn				0	0		0					
Spillback Cap Reductn				0	0		0					
Storage Cap Reductn				0	0		0					
Reduced v/c Ratio				0.00	0.18		0.00					
Intersection Summary												
	her											_
Cycle Length: 60												
Actuated Cycle Length: 21.6												
Natural Cycle: 40												
Control Type: Semi Act-Uncoo	ora											_
Maximum v/c Ratio: 0.15						- L O O - A						
Intersection Signal Delay: 4.8	- 26 20/				ntersectio		. ^					
Intersection Capacity Utilizatio	11 30.3%			10	CU Level	or Service	θA					
Analysis Period (min) 15												
Splits and Phases: 13: NYS	Route 1	31 & NYS	Route 3	37 West								

Splits and Phases: 13: NYS Route 131 & NYS Route 37 West

#13 #16	#13 #16	#13_#16	
* 4 ₀₁	🕇 🕨 🖂 🕹	▲ 1 1 2 4	
20 s	20 s	20 s	

Existing PM Peak 16: NYS Route 131 & NYS Route 37 East

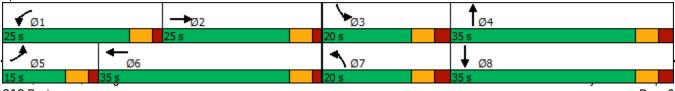
	≯	+	*	4	Ļ	*	•	1	*	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	††	1					1	1		4†	
Traffic Volume (vph)	1	305	4	0	0	0	0	2	5	0	3	0
Future Volume (vph)	1	305	4	0	0	0	0	2	5	0	3	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		0	0		0	0		0	0		0
Storage Lanes	1		1	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	1805	3312	1615	0	0	0	0	1900	1615	0	3610	0
Flt Permitted	0.950			-	-	-	-			-		
Satd. Flow (perm)	1805	3312	1615	0	0	0	0	1900	1615	0	3610	0
Right Turn on Red			Yes	-	-	Yes	-		Yes	-		Yes
Satd. Flow (RTOR)			200						200			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		479			493			324			228	
Travel Time (s)		10.9			11.2			7.4			5.2	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles (%)	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Shared Lane Traffic (%)	• / •	• / •	• / •	• , •	• / •	• / •	• , •	• / •	• / •	• / •	• / •	• / •
Lane Group Flow (vph)	1	347	5	0	0	0	0	2	6	0	3	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	12	rugitu	Lon	12	rugite	Lon	0	rugin	Lon	0	rugne
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1			Ū		2	1	1	2	Ū
Detector Template	Left	Thru	Right					Thru	Right	Left	Thru	
Leading Detector (ft)	20	100	20					100	20	20	100	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Detector 1 Position(ft)	0	0	0					0	0	0	0	
Detector 1 Size(ft)	20	6	20					6	20	20	6	
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex					Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	01 2/	01 2/						01 24	01 24	01 24	01 2/	
Detector 1 Extend (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 2 Position(ft)	0.0	94	0.0					94	0.0	0.0	94	
Detector 2 Size(ft)		6						6			6	
Detector 2 Type		Cl+Ex						Cl+Ex			CI+Ex	
Detector 2 Channel											OILX	
Detector 2 Extend (s)		0.0						0.0			0.0	
Turn Type	Split	NA	Prot					NA	Prot		NA	
Protected Phases	1 1	1	1					4	4	3	3	
Permitted Phases	I	I	I					-	т	5	5	
Detector Phase	1	1	1					4	4	3	3	
Switch Phase	ſ	I	I					4	4	5	5	
Minimum Initial (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
	5.0	5.0	0.0					5.0	5.0	5.0	5.0	

Lanes, Volumes, Timings C&S Engineers

Existing PM Peak 16: NYS Route 131 & NYS Route 37 East

	۶	-	\mathbf{r}	4	+	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	12.0	12.0	12.0					12.0	12.0	12.0	12.0	
Total Split (s)	20.0	20.0	20.0					20.0	20.0	20.0	20.0	
Total Split (%)	33.3%	33.3%	33.3%					33.3%	33.3%	33.3%	33.3%	
Maximum Green (s)	13.0	13.0	13.0					13.0	13.0	13.0	13.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0					7.0	7.0		7.0	
Lead/Lag								Lag	Lag	Lead	Lead	
Lead-Lag Optimize?								Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					None	None	None	None	
Act Effct Green (s)	18.5	18.5	18.5					6.8	6.8		6.7	
Actuated g/C Ratio	0.86	0.86	0.86					0.31	0.31		0.31	
v/c Ratio	0.00	0.12	0.00					0.00	0.01		0.00	
Control Delay	7.0	4.6	0.0					12.5	0.0		9.7	
Queue Delay	0.0	0.0	0.0					0.0	0.0		0.0	
Total Delay	7.0	4.6	0.0					12.5	0.0		9.7	
LOS	A	A	A					В	A		A	
Approach Delay		4.6						3.1			9.7	
Approach LOS		A						А			А	
Queue Length 50th (ft)	0	0	0					0	0		0	
Queue Length 95th (ft)	3	63	0					5	0		3	
Internal Link Dist (ft)		399			413			244	-		148	
Turn Bay Length (ft)	150											
Base Capacity (vph)	1326	2433	1239					1395	1239		2652	
Starvation Cap Reductn	0	0	0					0	0		0	
Spillback Cap Reductn	0	0	0					0	0		0	
Storage Cap Reductn	0	0	0					0	0		0	
Reduced v/c Ratio	0.00	0.14	0.00					0.00	0.00		0.00	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 21.	.6											
Natural Cycle: 40												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 0.15												
Intersection Signal Delay: 4	4.6			Ir	ntersection	n LOS: A						
Intersection Capacity Utiliza		ı				of Service	А					
Analysis Period (min) 15												
Splits and Phases: 16: N	IYS Route 1	31 & NY:	S Route 3	7 East								
#13 #16			#13 #16					#13 #16				

#13 #16	#13 #16	#13 #16	
20 s	20 s	20 s	


Existing PM Peak 21:

	٦	+	\mathbf{F}	4	Ļ	•	•	t	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	A		1	∱1 ≱		ľ	ę.		7	el el	
Traffic Volume (vph)	38	140	55	150	200	67	78	237	82	100	247	54
Future Volume (vph)	38	140	55	150	200	67	78	237	82	100	247	54
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	200		0	150		0	0		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	1770	3286	0	1770	3347	0	1671	1772	0	1752	1792	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	3286	0	1770	3347	0	1671	1772	0	1752	1792	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		49			44			16			10	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		546			510			451			340	
Travel Time (s)		12.4			11.6			10.3			7.7	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles (%)	2%	6%	3%	2%	5%	0%	8%	2%	6%	3%	3%	4%
Shared Lane Traffic (%)	_/*	0,0	• , •	_/*	• / •	• / •	• , •	_/*	•,•	• / •	• / •	.,,
Lane Group Flow (vph)	43	222	0	170	303	0	89	362	0	114	342	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	12	rugitt	Lon	12	rtight	Lon	12	ragine	Lon	12	rtight
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	Ţ	1	2	•	1	2	,	1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel		-		-			-					
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases		_								•		
Detector Phase	5	2		1	6		7	4		3	8	
Switch Phase	Ű	_			Ŭ					Ŭ	Ű	
Minimum Initial (s)	5.0	10.0		5.0	10.0							

Lanes, Volumes, Timings C&S Engineers

	٦	-	\mathbf{r}	1	+	•	1	1	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	23.1	20.0		10.1	24.1		11.1	24.1		11.1	27.1	
Total Split (s)	15.0	25.0		25.0	35.0		20.0	35.0		20.0	35.0	
Total Split (%)	14.3%	23.8%		23.8%	33.3%		19.0%	33.3%		19.0%	33.3%	
Maximum Green (s)	9.9	19.9		19.9	29.9		13.9	28.9		13.9	28.9	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.6		3.6	3.6	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.5	2.5		2.5	2.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.1		5.1	5.1		6.1	6.1		6.1	6.1	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	Max		None	Max		None	None		None	None	
Walk Time (s)		7.0			7.0			7.0			7.0	
Flash Dont Walk (s)		13.0			12.0			9.0			14.0	
Pedestrian Calls (#/hr)		0			0			0			0	
Act Effct Green (s)	7.8	21.8		14.1	33.9		10.2	22.5		10.9	23.1	
Actuated g/C Ratio	0.09	0.25		0.16	0.38		0.11	0.25		0.12	0.26	
v/c Ratio	0.28	0.26		0.61	0.23		0.47	0.79		0.53	0.72	
Control Delay	48.0	25.8		47.5	21.2		49.5	44.5		50.2	40.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	48.0	25.8		47.5	21.2		49.5	44.5		50.2	40.4	
LOS	D	С		D	С		D	D		D	D	
Approach Delay		29.4			30.6			45.5			42.8	
Approach LOS		С			С			D			D	
Queue Length 50th (ft)	25	44		98	61		52	197		66	183	
Queue Length 95th (ft)	61	86		168	105		103	309		127	293	
Internal Link Dist (ft)		466			430			371			260	
Turn Bay Length (ft)	200			200			150					
Base Capacity (vph)	206	843		415	1303		274	614		287	621	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.21	0.26		0.41	0.23		0.32	0.59		0.40	0.55	
Intersection Summary												
Area Type:	Other											
Cycle Length: 105												
Actuated Cycle Length: 88	8.9											
Natural Cycle: 90												
Control Type: Semi Act-U	ncoord											
Maximum v/c Ratio: 0.79												
Intersection Signal Delay:				Ir	ntersectior	n LOS: D						
Intersection Capacity Utiliz				IC	CU Level o	of Service	θB					

Splits and Phases: 21:

Existing PM Peak 26: NYS Route 37 & NYS Route 56/Andrews Street

01/31/2023

	۶	+	\mathbf{F}	4	ł	*	•	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ا	1		\$		ľ	ę.		ľ	el el	
Traffic Volume (vph)	45	96	37	15	147	59	116	154	22	45	96	37
Future Volume (vph)	45	96	37	15	147	59	116	154	22	45	96	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		175	0		0	0		150	125		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	0	1774	1615	0	1742	0	1703	1796	0	1805	1748	0
Flt Permitted		0.840			0.969		0.950			0.635		
Satd. Flow (perm)	0	1515	1615	0	1693	0	1703	1796	0	1206	1748	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			121		20			9			24	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		490			481			361			360	
Travel Time (s)		11.1			10.9			8.2			8.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	4%	6%	0%	3%	7%	0%	6%	4%	3%	0%	3%	7%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	157	41	0	246	0	129	195	0	50	148	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0	Ŭ		0	Ŭ		12	Ŭ		12	Ŭ
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NA		Prot	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8	•		•	2		6		
Detector Phase	4	4	4	8	8		5	2		1	6	
Switch Phase				Ű.	Ŭ		Ŭ	_			Ŭ,	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	

Lanes, Volumes, Timings C&S Engineers

26: NYS Route 37	۶	-		•	+	•	•	t	*	1	Ļ	~	
Lane Group	EBL	EBT	EBR	• WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Minimum Split (s)	24.5	24.5	24.5	24.5	24.5		11.5	24.5		11.5	24.5		
Total Split (s)	30.0	30.0	30.0	30.0	30.0		20.0	40.0		20.0	40.0		
Total Split (%)	33.3%	33.3%	33.3%	33.3%	33.3%		22.2%	44.4%		22.2%	44.4%		
Maximum Green (s)	23.5	23.5	23.5	23.5	23.5		13.5	33.5		13.5	33.5		
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		5.0	5.0		5.0	5.0		
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5		1.5	1.5		1.5	1.5		
Lost Time Adjust (s)	2.5	0.0	0.0	2.0	0.0		0.0	0.0		0.0	0.0		
Total Lost Time (s)		6.5	6.5		6.5		6.5	6.5		6.5	6.5		
Lead/Lag		0.5	0.5		0.5		Lead	Lag		Lead	Lag		
Lead-Lag Optimize?							Yes	Yes		Yes	Yes		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0		
Recall Mode	None	None	None	None	None		None	None		None	None		
	None	14.0	14.0	None	14.0		10.8	16.1		15.1	10.7		
Act Effct Green (s)					0.30			0.34		0.32	0.23		
Actuated g/C Ratio		0.30	0.30				0.23						
v/c Ratio		0.35	0.07		0.47		0.33	0.31		0.10	0.35		
Control Delay		20.1	0.2		19.8		23.0	16.6		8.9	20.2		
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0		
Total Delay		20.1	0.2		19.8		23.0	16.6		8.9	20.2		
LOS		C	А		В		С	B		А	C		
Approach Delay		16.0			19.8			19.1			17.3		
Approach LOS		В	•		В			B		_	В		
Queue Length 50th (ft)		39	0		58		34	46		7	33		
Queue Length 95th (ft)		98	0		138		90	109		23	89		
Internal Link Dist (ft)		410			401			281			280		
Turn Bay Length (ft)			175							125			
Base Capacity (vph)		834	944		941		630	1260		853	1231		
Starvation Cap Reductn		0	0		0		0	0		0	0		
Spillback Cap Reductn		0	0		0		0	0		0	0		
Storage Cap Reductn		0	0		0		0	0		0	0		
Reduced v/c Ratio		0.19	0.04		0.26		0.20	0.15		0.06	0.12		
Intersection Summary	0.1												
Area Type:	Other												
Cycle Length: 90	<u>^</u>												
Actuated Cycle Length: 46.	9												
Natural Cycle: 65													
Control Type: Actuated-Uno	coordinated												
Maximum v/c Ratio: 0.47						100 5							
Intersection Signal Delay: 1					ntersectior								
Intersection Capacity Utiliza	ation 50.7%			10	CU Level o	of Service	Α						
Analysis Period (min) 15													
Splits and Phases: 26: N	Splits and Phases: 26: NYS Route 37 & NYS Route 56/Andrews Street												
	▲												

Ø1	¶ø₂	↓ _{Ø4}
20 s	40 s	30 s
▲ Ø5	Ø6	₩ Ø8
20 s	40 s	30 s

Lanes, Volumes, Timings C&S Engineers

Existing PM Peak

4.3

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			÷	
Traffic Vol, veh/h	17	19	70	0	26	5	1	146	1	2	54	15
Future Vol, veh/h	17	19	70	0	26	5	1	146	1	2	54	15
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	73	73	73	73	73	73	73	73	73	73	92	92
Heavy Vehicles, %	19	25	0	0	19	0	0	0	0	0	0	8
Mvmt Flow	23	26	96	0	36	7	1	200	1	3	59	16

Major/Minor	Minor2		Ν	1inor1		N	Major1		Ν	lajor2			
Conflicting Flow All	297	276	67	337	284	201	75	0	0	201	0	0	
Stage 1	73	73	-	203	203	-	-	-	-	-	-	-	
Stage 2	224	203	-	134	81	-	-	-	-	-	-	-	
Critical Hdwy	7.29	6.75	6.2	7.1	6.69	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Follow-up Hdwy	3.671	4.225	3.3	3.5	4.171	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	623	595	1002	621	598	845	1537	-	-	1383	-	-	
Stage 1	896	791	-	804	703	-	-	-	-	-	-	-	
Stage 2	742	692	-	874	796	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	588	593	1002	542	596	845	1537	-	-	1383	-	-	
Mov Cap-2 Maneuver	588	593	-	542	596	-	-	-	-	-	-	-	
Stage 1	895	789	-	803	702	-	-	-	-	-	-	-	
Stage 2	698	691	-	763	794	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	10.4	11.2	0	0.3	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1537	-	-	810	626	1383	-	-
HCM Lane V/C Ratio	0.001	-	-	0.179	0.068	0.002	-	-
HCM Control Delay (s)	7.3	0	-	10.4	11.2	7.6	0	-
HCM Lane LOS	А	А	-	В	В	Α	Α	-
HCM 95th %tile Q(veh)	0	-	-	0.7	0.2	0	-	-

Existing AM Peak - Detour 13: NYS Route 131 & NYS Route 37 West

01/31/2023

Future (vph) 0 0 0 1 215 51 3 97 0 0 81 43 Ideal Flow (vph) 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1900 1615 Satil, Flow (prm) 0 0 0 1805 3195 1615 1805 1900 0 0 1900 1615 Satil, Flow (PrOR) 0 0 0 1805 3190 30 30 30 30 30 30 30 30 30 30 30 30 30		≯	→	*	4	ł	•	•	t	1	1	ţ	~
Traffic Volume (vph) 0 0 0 1 215 51 3 97 0 0 81 43 Future Volume (vph) 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1900 1615 1805 1803 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 <td< th=""><th>Lane Group</th><th>EBL</th><th>EBT</th><th>EBR</th><th>WBL</th><th>WBT</th><th>WBR</th><th>NBL</th><th>NBT</th><th>NBR</th><th>SBL</th><th>SBT</th><th>SBR</th></td<>	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Oxlume (vph) 0 0 0 1 215 51 3 97 0 0 81 43 Ideal Flow (vphz) 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1615 1805 1900 0 0 1615 1805 1803 183 183 1803 181 1803 1803 <t< td=""><td>Lane Configurations</td><td></td><td></td><td></td><td>ሻ</td><td>- ††</td><td>1</td><td>ሻ</td><td>↑</td><td></td><td></td><td>•</td><td>1</td></t<>	Lane Configurations				ሻ	- † †	1	ሻ	↑			•	1
Ideal Flow (vph) 1900	Traffic Volume (vph)	0	0	0	1		51		97	0	0		43
Ideal Flow (vphp) 1900 1813 1813 <td>Future Volume (vph)</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>215</td> <td>51</td> <td>3</td> <td>97</td> <td>0</td> <td>0</td> <td>81</td> <td>43</td>	Future Volume (vph)	0	0	0	1	215	51	3	97	0	0	81	43
Storage Length (ft) 0 0 275 0 0 0 0 0 Storage Lanes 0 0 1 1 1 0 0 1 Taper Length (ft) 25 7 26 7 26 7 200 1615 1805 1900 0 0 1615 1805 1083 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83	(,,,)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Lanes 0 0 1 1 1 1 0 0 1 Taper Length (ft) 25	(, , , ,												
Taper Length (ft) 25 25 25 25 Statl. Flow (prot) 0 0 1805 3195 1615 1805 1900 0 0 1000 1615 Statl. Flow (perm) 0 0 0 1805 3195 1615 1805 1900 0 0 1000 1615 Statl. Flow (perm) 0 0 1805 3195 1615 1805 1900 0 0 1000 1615 1805 1900 0 0 1000 1615 1805 1900 0 0 1000 1615 1805 1900 0 0 103 100 <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>1</td>				0				1		0	0		1
Said. Flow (port) 0 0 0 1805 3195 1615 1805 1900 0 1900 1615 FIt Permitted 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.0 0.1615 Right Yurn on Red Yes					25								
Fit Permitted 0,950 0.950 Satd. Flow (perm) 0 0 1805 3195 1615 1805 1900 0 0 1900 1615 Stight Turn on Red Yes Yes Yes Yes Yes 200 Link Speed (mph) 30 30 30 30 30 30 30 Link Distance (tt) 453 483 228 523 1119 Peak Hour Factor 0.83 <td< td=""><td></td><td></td><td>0</td><td>0</td><td></td><td>3195</td><td>1615</td><td></td><td>1900</td><td>0</td><td></td><td>1900</td><td>1615</td></td<>			0	0		3195	1615		1900	0		1900	1615
Satd. Flow (perm) 0 0 0 1805 1915 1805 1900 0 0 1900 1615 Right Turn on Red Yes Yes <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td>		-	-	-						-	-		
Right Turn on Red Yes		0	0	0		3195	1615		1900	0	0	1900	1615
Satd. Flow (RTOR) 200 200 200 Link Speed (mph) 30	. ,	•	•								•		
Link Speed (mph) 30 30 30 30 30 Link Distance (ft) 453 483 228 523 Travel Time (s) 10.3 11.0 5.2 11.9 Peak Hour Factor 0.83				100						100			
Link Distance (ft) 453 483 228 523 Travel Time (s) 10.3 11.0 5.2 11.9 Peak Hour Factor 0.83			30			30	200		30			30	200
Travel Time (s) 10.3 11.0 5.2 11.9 Peak Hour Factor 0.83 0.													
Peak Hour Factor 0.83 <td>()</td> <td></td>	()												
Heavy Vehicles (%) 0% 0		0.83		0.83	0.83		0.83	0.83		0.83	0.83		0.83
Shared Lane Traffic (%) Lane Group Flow (vph) 0 0 0 1 259 61 4 117 0 0 98 52 Enter Blocked Intersection No No <td></td>													
Lane Group Flow (vph) 0 0 0 1 259 61 4 117 0 0 98 52 Enter Blocked Intersection No No <td></td> <td>0 70</td> <td>070</td> <td>070</td> <td>0 /0</td> <td>10 /0</td> <td>0 /0</td> <td>0 /0</td> <td>070</td> <td>0 /0</td> <td>0 /0</td> <td>070</td> <td>070</td>		0 70	070	070	0 /0	10 /0	0 /0	0 /0	070	0 /0	0 /0	070	070
Enter Blocked Intersection No No <th< td=""><td></td><td>٥</td><td>٥</td><td>٥</td><td>1</td><td>250</td><td>61</td><td>1</td><td>117</td><td>٥</td><td>٥</td><td>08</td><td>52</td></th<>		٥	٥	٥	1	250	61	1	117	٥	٥	08	52
Lane Alignment Left Left Right	1 (17)										-		
Median Width(ft) 12 12 12 12 12 12 Link Offset(ft) 0													
Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 16 Headway Factor 1.00		Leit		Right	Leit		Right	Leit		Right	Leit		Right
Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane													
Two way Left Turn Lane Headway Factor 1.00	()												
Headway Factor 1.00<	()		10			01			10			01	
Turning Speed (mph) 15 9 15 16 16 16 16 16 16 16 16 100 20 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 100 20 100 100 100 100 100 100 100		4 00	1 00	1 00	4 00	1 00	1 00	4.00	1 00	1 00	1 00	1 00	1 00
Number of Detectors 1 2 1 1 2 2 1 Detector Template Left Thru Right Detector Thru Right Left Thru Right Left Thru Right Left Thru Right Left Right Right Left Cl+Ex Cl+Ex Cl+Ex Cl+Ex Cl+Ex			1.00			1.00			1.00			1.00	
Detector Template Left Thru Right Left Thru Right Leading Detector (ft) 20 100 20 20 100 100 20 Trailing Detector (ft) 0 0 0 0 0 0 0 0 0 Detector 1 Position(ft) 0		15		9		0			0	9	15	•	9
Leading Detector (ft) 20 100 20 20 100 100 20 Trailing Detector (ft) 0							•						1
Trailing Detector (ft) 0	•												
Detector 1 Position(ft) 0													
Detector 1 Size(ft) 20 6 20 20 6 6 20 Detector 1 Type CI+Ex CI 0.0 CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex													
Detector 1 Type CI+Ex	· · · · · · · · · · · · · · · · · · ·												
Detector 1 Channel Detector 1 Extend (s) 0.0 <													
Detector 1 Extend (s) 0.0					Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	Cl+Ex			Cl+Ex	Cl+Ex
Detector 1 Queue (s) 0.0													
Detector 1 Delay (s) 0.0													
Detector 2 Position(ft) 94 94 94 Detector 2 Size(ft) 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Perm NA Perm Split NA Prot Protected Phases 1 4 4 3 3 3 Permitted Phases 1 1 4 4 3 3 3 Switch Phase 1 1 4 4 3 3 3	· · · · · · · · · · · · · · · · · · ·												
Detector 2 Size(ft)666Detector 2 TypeCI+ExCI+ExCI+ExDetector 2 Channel0.00.00.0Detector 2 Extend (s)0.00.00.0Turn TypePermNAPermSplitNAProtected Phases14433Permitted Phases1114433Switch Phase1114433					0.0		0.0	0.0					0.0
Detector 2 TypeCI+ExCI+ExCI+ExDetector 2 Channel0.00.00.0Detector 2 Extend (s)0.00.00.0Turn TypePermNAPermSplitNAProtected Phases14433Permitted Phases111443Detector Phase11333Switch Phase114433	()												
Detector 2 ChannelDetector 2 Extend (s)0.00.0Turn TypePermNAPermSplitNANAProtProtected Phases14433Permitted Phases1114433Detector Phase1114433Switch Phase1114433	Detector 2 Size(ft)												
Detector 2 Extend (s)0.00.0Turn TypePermNAPermSplitNANAProtProtected Phases144333Permitted Phases1114433Detector Phase1114433Switch Phase	Detector 2 Type					CI+Ex			CI+Ex			CI+Ex	
Turn TypePermNAPermSplitNANAProtProtected Phases14433Permitted Phases1111Detector Phase11133Switch Phase111443	Detector 2 Channel												
Protected Phases14433Permitted Phases111Detector Phase111433Switch Phase	Detector 2 Extend (s)					0.0			0.0			0.0	
Protected Phases14433Permitted Phases111Detector Phase111433Switch Phase	Turn Type				Perm	NA	Perm	Split	NA			NA	Prot
Permitted Phases11Detector Phase1114433Switch Phase	Protected Phases					1			4			3	3
Detector Phase 1 1 4 4 3 3 Switch Phase 1 1 1 4 4 3 3	Permitted Phases				1		1						
Switch Phase						1		4	4			3	3
ט.ט 5.ט 5.ט 5.ט 5.ט 5.ט 5.ט 5.ט 5.ט 5.ט	Minimum Initial (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0

Lanes, Volumes, Timings C&S Engineers

Existing AM Peak - Detour 13: NYS Route 131 & NYS Route 37 West

01/31/2023	
------------	--

	٠	-	\mathbf{r}	*	+	*	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)				12.0	12.0	12.0	12.0	12.0			12.0	12.0
Total Split (s)				20.0	20.0	20.0	20.0	20.0			20.0	20.0
Total Split (%)				33.3%	33.3%	33.3%	33.3%	33.3%			33.3%	33.3%
Maximum Green (s)				13.0	13.0	13.0	13.0	13.0			13.0	13.0
Yellow Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
All-Red Time (s)				2.0	2.0	2.0	2.0	2.0			2.0	2.0
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)				7.0	7.0	7.0	7.0	7.0			7.0	7.0
Lead/Lag							Lag	Lag			Lead	Lead
Lead-Lag Optimize?							Yes	Yes			Yes	Yes
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Recall Mode				None	None	None	None	None			None	None
Act Effct Green (s)				12.3	12.3	12.3	9.9	9.9			9.7	9.7
Actuated g/C Ratio				0.28	0.28	0.28	0.23	0.23			0.22	0.22
v/c Ratio				0.00	0.29	0.10	0.01	0.27			0.23	0.10
Control Delay				17.0	17.2	0.3	31.3	31.9			20.7	0.4
Queue Delay				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Delay				17.0	17.2	0.3	31.3	31.9			20.7	0.4
LOS				В	В	А	С	С			С	A
Approach Delay					14.0			31.9			13.6	
Approach LOS				-	В			С			В	
Queue Length 50th (ft)				0	32	0	1	41			26	0
Queue Length 95th (ft)				3	63	0	m7	86			58	0
Internal Link Dist (ft)		373			403			148			443	
Turn Bay Length (ft)				275	4000			=0.4			=0.4	
Base Capacity (vph)				726	1286	769	726	764			764	769
Starvation Cap Reductn				0	0	0	0	0			0	0
Spillback Cap Reductn				0	0	0	0	0			0	0
Storage Cap Reductn				0	0	0	0	0			0	0
Reduced v/c Ratio				0.00	0.20	0.08	0.01	0.15			0.13	0.07
Intersection Summary												
Area Type: Other	r											
Cycle Length: 60												
Actuated Cycle Length: 43.7												
Natural Cycle: 40												
Control Type: Semi Act-Uncoord												
Maximum v/c Ratio: 0.36				I.	torocoti-							
ntersection Signal Delay: 17.6 Intersection LOS: B ntersection Capacity Utilization 31.8% ICU Level of Service A												
Intersection Capacity Utilization 3	51.0%			10	JO Level	OI SEIVICE	A					
Analysis Period (min) 15		motores		room oig								
m Volume for 95th percentile q	ueue la	smetered	i by upst	ream sign	idi.							
Splits and Phases: 13: NVS P	outo 1'	24 0 NIVC	Douto	7 Weet								

Splits and Phases: 13: NYS Route 131 & NYS Route 37 West

Lanes, Volumes, Timings C&S Engineers Existing AM Peak - Detour 16: NYS Route 131 & NYS Route 37 East

	٨	+	*	4	Ļ	*	•	1	1	×	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	<u></u>	1					•	1		4†	
Traffic Volume (vph)	95	263	2	0	0	0	0	1	3	81	1	0
Future Volume (vph)	95	263	2	0	0	0	0	1	3	81	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		0	0		0	0		0	0		0
Storage Lanes	1		1	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	1805	3312	1615	0	0	0	0	1900	1615	0	3440	0
Flt Permitted	0.950										0.953	
Satd. Flow (perm)	1805	3312	1615	0	0	0	0	1900	1615	0	3440	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			200						200			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		479			493			324			228	
Travel Time (s)		10.9			11.2			7.4			5.2	
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles (%)	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	120	333	3	0	0	0	0	1	4	0	104	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	J •		12	J -		0	J •		0	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1					2	1	1	2	
Detector Template	Left	Thru	Right					Thru	Right	Left	Thru	
Leading Detector (ft)	20	100	20					100	20	20	100	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Detector 1 Position(ft)	0	0	0					0	0	0	0	
Detector 1 Size(ft)	20	6	20					6	20	20	6	
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex					CI+Ex	Cl+Ex	CI+Ex	CI+Ex	
Detector 1 Channel		-							-			
Detector 1 Extend (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94						94			94	
Detector 2 Size(ft)		6						6			6	
Detector 2 Type		Cl+Ex						Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0						0.0			0.0	
Turn Type	Split	NA	Prot					NA	Prot	Split	NA	
Protected Phases	1	1	1					4	4	3	3	
Permitted Phases										Ű	Ŭ,	
Detector Phase	1	1	1					4	4	3	3	
Switch Phase										Ű	Ŭ,	
Minimum Initial (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
	5.0	0.0	0.0					0.0	0.0	0.0	0.0	

Lanes, Volumes, Timings C&S Engineers

Existing AM Peak - Detour 16: NYS Route 131 & NYS Route 37 East

01/31/2023	01	/31	/20	23
------------	----	-----	-----	----

	٦	-	$\mathbf{\hat{z}}$	•	←	•	1	t	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	12.0	12.0	12.0					12.0	12.0	12.0	12.0	
Total Split (s)	20.0	20.0	20.0					20.0	20.0	20.0	20.0	
Total Split (%)	33.3%	33.3%	33.3%					33.3%	33.3%	33.3%	33.3%	
Maximum Green (s)	13.0	13.0	13.0					13.0	13.0	13.0	13.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0					7.0	7.0		7.0	
Lead/Lag								Lag	Lag	Lead	Lead	
Lead-Lag Optimize?								Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					None	None	None	None	
Act Effct Green (s)	12.3	12.3	12.3					9.9	9.9		9.7	
Actuated g/C Ratio	0.28	0.28	0.28					0.23	0.23		0.22	
v/c Ratio	0.24	0.36	0.01					0.00	0.01		0.14	
Control Delay	18.3	17.6	0.0					18.0	0.0		5.2	
Queue Delay	0.0	0.0	0.0					0.0	0.0		0.0	
Total Delay	18.3	17.6	0.0					18.0	0.0		5.2	
LOS	В	В	А					В	А		А	
Approach Delay		17.6						3.6			5.2	
Approach LOS		В						А			А	
Queue Length 50th (ft)	28	42	0					0	0		2	
Queue Length 95th (ft)	63	74	0					3	0		5	
Internal Link Dist (ft)		399			413			244			148	
Turn Bay Length (ft)	150											
Base Capacity (vph)	726	1333	769					764	769		1384	
Starvation Cap Reductn	0	0	0					0	0		0	
Spillback Cap Reductn	0	0	0					0	0		0	
Storage Cap Reductn	0	0	0					0	0		0	
Reduced v/c Ratio	0.17	0.25	0.00					0.00	0.01		0.08	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 43.7	7											
Natural Cycle: 40												
Control Type: Semi Act-Unc	coord											
Maximum v/c Ratio: 0.36												
Intersection Signal Delay: 1	5.2			I	ntersection	n LOS: B						
Intersection Capacity Utiliza	ation 33.4%	ı		I	CU Level	of Service	А					
Analysis Period (min) 15												
Splits and Phases: 16: N	YS Route 1	31 & NY	S Route 3	7 Fast								
#13 #16			#13 #16					#13 #16				2

#13 #16	#13 #16	#13 #16
20 s	20 s	20 s

Lanes, Volumes, Timings C&S Engineers 5

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			\$			÷	
Traffic Vol, veh/h	8	24	73	0	43	4	1	117	1	4	152	97
Future Vol, veh/h	8	24	73	0	43	4	1	117	1	4	152	97
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	49	49	49	73	73	73	73	73	73	73	92	92
Heavy Vehicles, %	19	25	0	0	19	0	0	0	0	0	0	8
Mvmt Flow	16	49	149	0	59	5	1	160	1	5	165	105

Major/Minor	Minor2		Ν	1inor1		N	Major1		Ν	1ajor2			
Conflicting Flow All	423	391	218	490	443	161	270	0	0	161	0	0	
Stage 1	228	228	-	163	163	-	-	-	-	-	-	-	
Stage 2	195	163	-	327	280	-	-	-	-	-	-	-	
Critical Hdwy	7.29	6.75	6.2	7.1	6.69	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Follow-up Hdwy	3.671	4.225	3.3	3.5	4.171	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	513	510	827	492	484	889	1305	-	-	1430	-	-	
Stage 1	738	675	-	844	732	-	-	-	-	-	-	-	
Stage 2	769	722	-	690	649	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	460	507	827	372	482	889	1305	-	-	1430	-	-	
Mov Cap-2 Maneuver	460	507	-	372	482	-	-	-	-	-	-	-	
Stage 1	737	672	-	843	731	-	-	-	-	-	-	-	
Stage 2	702	721	-	522	646	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	12.6	13.2	0.1	0.1	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1305	-	-	686	502	1430	-	-
HCM Lane V/C Ratio	0.001	-	-	0.312	0.128	0.004	-	-
HCM Control Delay (s)	7.8	0	-	12.6	13.2	7.5	0	-
HCM Lane LOS	А	А	-	В	В	А	А	-
HCM 95th %tile Q(veh)	0	-	-	1.3	0.4	0	-	-

Existing PM Peak - Detour 13: NYS Route 131 & NYS Route 37 West

01/31/2023

Lane Configurations Tardin Vision A F A F A F A F F Trafic Volume (vph) 0 0 0 3 378 59 3 58 0 0 112 113 Ideal Flow (vphp) 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1900 1615 1805 1803 3195 1615 1805 1803 303 303 303 101		≯	+	1	4	t	*	•	1	1	1	ţ	~
Traffic Volume (vph) 0 0 0 3 378 59 3 58 0 0 112 113 Ideal Flow (vphp) 1900 1615 1805 1805 1805 1805 1805 1800 0 1900 1615 1805 1800 0 1900 1615 1805 1800 0 0 1900 1615 1805 1800 0 0 0 0 0 1615 1805 1800 0 0 0 0 1615 1805 1800 0 0 0<	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 0 0 0 3 378 59 3 58 0 0 112 113 Ideal Flow (vphp) 1900 1615 1805 1805 1805 1805 1805 1800 0 1900 1615 1805 1800 0 1900 1615 1805 1800 0 0 1900 1615 1805 1800 0 0 0 0 0 1615 1805 1800 0 0 0 0 1615 1805 1800 0 0 0<	Lane Configurations				1	<u></u>	1	ľ	•			•	1
Ideal Flow (vphp) 1900 1615 1805 1900 0 0 1900 1615 1805 1900 0 0 1900 1615 1805 1900 10 1900 1615 1805 1900 10 100 100 100 100 </td <td>Traffic Volume (vph)</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>59</td> <td></td> <td>58</td> <td>0</td> <td>0</td> <td></td> <td>113</td>	Traffic Volume (vph)	0	0	0			59		58	0	0		113
Storage Lanes 0 0 275 0 0 0 0 1 Storage Lanes 0 0 1 1 1 0 0 1 Stade, Flow (prot) 0 0 0 1805 3195 1615 1805 1900 0 0 1900 1615 Stad, Flow (perm) 0 0 0 1805 3195 1615 1805 1900 0 0 1900 1615 Stad, Flow (RTOR) 0 0 0 1805 3195 1615 1805 1900 0 0 1900 1615 Stad, Flow (RTOR) 30 <td>Future Volume (vph)</td> <td>0</td> <td>0</td> <td>0</td> <td>3</td> <td>378</td> <td>59</td> <td>3</td> <td>58</td> <td>0</td> <td>0</td> <td>112</td> <td>113</td>	Future Volume (vph)	0	0	0	3	378	59	3	58	0	0	112	113
Storage Lange 0 0 1 1 1 1 0 0 1 Taper Length (ft) 25	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Taper Length (ft) 25 26 25 25 Satd. Flow (prot) 0 0 1005 3195 1615 1805 1900 0 1900 1615 Satd. Flow (perm) 0 0 0 1805 3195 1615 1805 1900 0 0 1900 1615 Right Turn on Red Yes Yes </td <td>Storage Length (ft)</td> <td>0</td> <td></td> <td>0</td> <td>275</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td>	Storage Length (ft)	0		0	275		0	0		0	0		0
Said. Flow (prot) 0 0 0 1805 3195 1615 1805 1900 0 1900 1615 Fit Permitted 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.92 0.92 0	Storage Lanes	0		0	1		1	1		0	0		1
Fit Permitte 0.950 0.950 Satd. Flow (perm) 0 0 0 1805 3195 1615 1805 1900 0 0 1000 1615 Satd. Flow (RTOR) 200 2	Taper Length (ft)	25			25			25			25		
Satd. Flow (perm) 0 0 0 1805 3195 1615 1805 1900 0 0 1900 1615 Right Turn on Red Yes Yes Yes Yes Yes Yes 200 Link Speed (mph) 30 30 30 30 30 30 30 30 Link Distance (ft) 453 483 228 523 11.9 Peak Hour Factor 0.92	Satd. Flow (prot)	0	0	0	1805	3195	1615	1805	1900	0	0	1900	1615
Right Turn on Red Yes	Flt Permitted				0.950			0.950					
Said. Flow (RTOR) 200 200 200 Link Speed (mph) 30	Satd. Flow (perm)	0	0	0	1805	3195	1615	1805	1900	0	0	1900	1615
Link Speed (mph) 30 30 30 30 30 Link Distance (ft) 453 483 228 523 Travel Time (s) 10.3 11.0 5.2 11.9 Peak Hour Factor 0.92	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (ft) 453 483 228 523 Travel Time (s) 10.3 11.0 5.2 11.9 Peak Hour Factor 0.92 D.92	Satd. Flow (RTOR)						200						200
Travel Time (s) 10.3 11.0 5.2 11.9 Peak Hour Factor 0.92 12	Link Speed (mph)		30			30			30			30	
Peak Hour Factor 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	Link Distance (ft)		453			483			228			523	
Heavy Vehicles (%) 0%	Travel Time (s)		10.3			11.0			5.2			11.9	
Shared Lane Traffic (%) Lane Group Flow (vph) 0 0 0 3 411 64 3 63 0 0 122 123 Enter Blocked Intersection No No </td <td>Peak Hour Factor</td> <td>0.92</td>	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Lane Group Flow (vph) 0 0 0 3 411 64 3 63 0 0 122 123 Enter Blocked Intersection No No <td>Heavy Vehicles (%)</td> <td>0%</td> <td>0%</td> <td>0%</td> <td>0%</td> <td>13%</td> <td>0%</td> <td>0%</td> <td>0%</td> <td>0%</td> <td>0%</td> <td>0%</td> <td>0%</td>	Heavy Vehicles (%)	0%	0%	0%	0%	13%	0%	0%	0%	0%	0%	0%	0%
Enter Blocked Intersection No No <th< td=""><td>Shared Lane Traffic (%)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Shared Lane Traffic (%)												
Lane Alignment Left Left Right Left Left Right Left Left Right	Lane Group Flow (vph)	0	0	0	3	411	64	3	63	0	0	122	123
Median Width(ft) 12 12 12 12 12 12 Link Offset(ft) 0	Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Median Width(ft) 12 12 12 12 12 12 Link Offset(ft) 0	Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.00 <td< td=""><td>Median Width(ft)</td><td></td><td>12</td><td>-</td><td></td><td>12</td><td></td><td></td><td>12</td><td>-</td><td></td><td>12</td><td></td></td<>	Median Width(ft)		12	-		12			12	-		12	
Two way Left Turn Lane Headway Factor 1.00 <td>Link Offset(ft)</td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td>	Link Offset(ft)		0			0			0			0	
Headway Factor 1.00	Crosswalk Width(ft)		16			16			16			16	
Turning Speed (mph) 15 9 15 15 16 16 100 100 20 100 100 20 100 100 20 100 100 20 100 100 20 100 100 20 100 100 20 100 100 20 100 100 100 100 <th1< td=""><td>Two way Left Turn Lane</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	Two way Left Turn Lane												
Number of Detectors 1 2 1 1 2 2 1 Detector Template Left Thru Right Left Thru Thru Right Left Right Left Thru Right Left Thru Thru	Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Detector Template Left Thru Right Left Thru Right Leading Detector (ft) 20 100 20 20 100 100 20 Trailing Detector (ft) 0 <t< td=""><td>Turning Speed (mph)</td><td>15</td><td></td><td>9</td><td>15</td><td></td><td>9</td><td>15</td><td></td><td>9</td><td>15</td><td></td><td>9</td></t<>	Turning Speed (mph)	15		9	15		9	15		9	15		9
Leading Detector (ft) 20 100 20 20 100 100 20 Trailing Detector (ft) 0	Number of Detectors				1	2	1	1	2			2	1
Trailing Detector (ft) 0 <td>Detector Template</td> <td></td> <td></td> <td></td> <td>Left</td> <td>Thru</td> <td>Right</td> <td>Left</td> <td>Thru</td> <td></td> <td></td> <td>Thru</td> <td>Right</td>	Detector Template				Left	Thru	Right	Left	Thru			Thru	Right
Detector 1 Position(ft) 0	Leading Detector (ft)				20	100	20	20	100			100	20
Detector 1 Size(ft) 20 6 20 20 6 6 20 Detector 1 Type CI+Ex CI	Trailing Detector (ft)				0	0	0	0	0			0	0
Detector 1 Type Cl+Ex O.0 0.0	Detector 1 Position(ft)				0	0	0	0	0			0	0
Detector 1 Channel Detector 1 Extend (s) 0.0 <	Detector 1 Size(ft)				20	6	20	20	6			6	20
Detector 1 Extend (s) 0.0	Detector 1 Type				CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex			CI+Ex	CI+Ex
Detector 1 Queue (s) 0.0	Detector 1 Channel												
Detector 1 Delay (s) 0.0	Detector 1 Extend (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 2 Position(ft) 94 94 94 Detector 2 Size(ft) 6 6 6 Detector 2 Size(ft) 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Perm NA Perm Split NA Protected Phases Protected Phases 1 4 4 3 3 3 Permitted Phases 1 1 4 4 3 3 3	Detector 1 Queue (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 2 Size(ft)666Detector 2 TypeCI+ExCI+ExCI+ExDetector 2 Channel0.00.00.0Detector 2 Extend (s)0.00.00.0Turn TypePermNAPermSplitNAProtected Phases14433Permitted Phases11144	Detector 1 Delay (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 2 TypeCI+ExCI+ExCI+ExDetector 2 ChannelDetector 2 Extend (s)0.0Turn TypePermNAPermSplitNANAProiProtected Phases144333Permitted Phases1114433						94			94			94	
Detector 2 ChannelDetector 2 Extend (s)0.00.0Turn TypePermNAPermSplitNANAProiProtected Phases14433Permitted Phases11111Detector Phase1133	Detector 2 Size(ft)					6			6			6	
Detector 2 ChannelDetector 2 Extend (s)0.00.0Turn TypePermNAPermSplitNANAProtected PhasesProtected Phases14433Permitted Phases11111Detector Phase1133	Detector 2 Type					CI+Ex			CI+Ex			CI+Ex	
Turn TypePermNAPermSplitNANAProtectedProtected Phases14433Permitted Phases111443Detector Phase1114433	Detector 2 Channel												
Turn TypePermNAPermSplitNANAProfProtected Phases14433Permitted Phases111443Detector Phase1114433	Detector 2 Extend (s)					0.0			0.0			0.0	
Protected Phases 1 4 4 3 3 Permitted Phases 1 1 1 1 1 1 1 3 <t< td=""><td></td><td></td><td></td><td></td><td>Perm</td><td>NA</td><td>Perm</td><td>Split</td><td>NA</td><td></td><td></td><td>NA</td><td>Prot</td></t<>					Perm	NA	Perm	Split	NA			NA	Prot
Permitted Phases 1 1 Detector Phase 1 1 4 4 3 3													3
Detector Phase 1 1 1 4 4 3 3					1		1						
						1		4	4			3	3
	Switch Phase												
					5.0	5.0	5.0	5.0	5.0			5.0	5.0

Lanes, Volumes, Timings C&S Engineers

Existing PM Peak - Detour 13: NYS Route 131 & NYS Route 37 West

01/31/2023	01	/31	/20	23
------------	----	-----	-----	----

	۶	-	\mathbf{i}	4	+	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)				12.0	12.0	12.0	12.0	12.0			12.0	12.0
Total Split (s)				20.0	20.0	20.0	20.0	20.0			20.0	20.0
Total Split (%)				33.3%	33.3%	33.3%	33.3%	33.3%			33.3%	33.3%
Maximum Green (s)				13.0	13.0	13.0	13.0	13.0			13.0	13.0
Yellow Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
All-Red Time (s)				2.0	2.0	2.0	2.0	2.0			2.0	2.0
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)				7.0	7.0	7.0	7.0	7.0			7.0	7.0
Lead/Lag							Lag	Lag			Lead	Lead
Lead-Lag Optimize?							Yes	Yes			Yes	Yes
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Recall Mode				None	None	None	None	None			None	None
Act Effct Green (s)				16.8	16.8	16.8	8.7	8.7			10.0	10.0
Actuated g/C Ratio				0.41	0.41	0.41	0.21	0.21			0.25	0.25
v/c Ratio				0.00	0.31	0.08	0.01	0.16			0.26	0.22
Control Delay				16.0	15.8	0.2	31.7	30.3			19.0	2.0
Queue Delay				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Delay				16.0	15.8	0.2	31.7	30.3			19.0	2.0
LOS				В	В	А	С	С			В	A
Approach Delay					13.7			30.4			10.5	
Approach LOS					B	_		С			В	
Queue Length 50th (ft)				1	52	0	1	22			32	0
Queue Length 95th (ft)		070		6	103	0	9	58			71	11
Internal Link Dist (ft)		373		075	403			148			443	
Turn Bay Length (ft)				275	4074	007	774	045			045	007
Base Capacity (vph)				774	1371	807	774	815			815	807
Starvation Cap Reductn				0	0	0	0	0			0	0
Spillback Cap Reductn				0	0	0	0	0			0	0
Storage Cap Reductn Reduced v/c Ratio				0	0	0	0	0			0 0.15	0
				0.00	0.30	0.08	0.00	0.08			0.15	0.15
Intersection Summary Area Type: Oth	<u>.</u>											
Area Type: Oth Cycle Length: 60	er											
Actuated Cycle Length: 40.5												
Natural Cycle: 40												
Control Type: Semi Act-Uncoor	d											
	u											
Maximum v/c Ratio: 0.31												
Intersection Signal Delay: 14.1 Intersection LOS: B Intersection Capacity Utilization 39.1% ICU Level of Service A												
Analysis Period (min) 15												
Analysis Period (min) 15 Splits and Phases: 13: NYS Route 131 & NYS Route 37 West												

#13 #16 #13 #16 #13 #16 #13 #16 #13 #16 #14 Ø4 20 s 20 s 20 s Existing PM Peak - Detour 16: NYS Route 131 & NYS Route 37 East

	01	/31	/20	23
--	----	-----	-----	----

	٦	→	\mathbf{r}	4	+	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	††	1					1	1		4ħ	
Traffic Volume (vph)	58	305	4	0	0	0	0	2	5	112	3	0
Future Volume (vph)	58	305	4	0	0	0	0	2	5	112	3	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		0	0		0	0		0	0		0
Storage Lanes	1		1	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	1805	3312	1615	0	0	0	0	1900	1615	0	3440	0
Flt Permitted	0.950										0.953	
Satd. Flow (perm)	1805	3312	1615	0	0	0	0	1900	1615	0	3440	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			200						200			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		479			493			324			228	
Travel Time (s)		10.9			11.2			7.4			5.2	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles (%)	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	66	347	5	0	0	0	0	2	6	0	130	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	J •		12	J -		0	J -		0	J -
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1					2	1	1	2	
Detector Template	Left	Thru	Right					Thru	Right	Left	Thru	
Leading Detector (ft)	20	100	20					100	20	20	100	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Detector 1 Position(ft)	0	0	0					0	0	0	0	
Detector 1 Size(ft)	20	6	20					6	20	20	6	
Detector 1 Type	CI+Ex	Cl+Ex	CI+Ex					CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94						94			94	
Detector 2 Size(ft)		6						6			6	
Detector 2 Type		Cl+Ex						CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0						0.0			0.0	
Turn Type	Split	NA	Prot					NA	Prot	Split	NA	
Protected Phases	1	1	1					4	4	3	3	
Permitted Phases												
Detector Phase	1	1	1					4	4	3	3	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	

Lanes, Volumes, Timings C&S Engineers

Existing PM Peak - Detour 16: NYS Route 131 & NYS Route 37 East

01/31/2023	01	/31	/20	23
------------	----	-----	-----	----

	٦	-	\mathbf{F}	4	←	•	•	Ť	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	12.0	12.0	12.0					12.0	12.0	12.0	12.0	
Total Split (s)	20.0	20.0	20.0					20.0	20.0	20.0	20.0	
Total Split (%)	33.3%	33.3%	33.3%					33.3%	33.3%	33.3%	33.3%	
Maximum Green (s)	13.0	13.0	13.0					13.0	13.0	13.0	13.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0					7.0	7.0		7.0	
Lead/Lag								Lag	Lag	Lead	Lead	
Lead-Lag Optimize?								Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					None	None	None	None	
Act Effct Green (s)	16.8	16.8	16.8					8.7	8.7		10.0	
Actuated g/C Ratio	0.41	0.41	0.41					0.21	0.21		0.25	
v/c Ratio	0.09	0.25	0.01					0.00	0.01		0.15	
Control Delay	16.1	15.4	0.0					19.5	0.0		5.0	
Queue Delay	0.0	0.0	0.0					0.0	0.0		0.0	
Total Delay	16.1	15.4	0.0					19.5	0.0		5.0	
LOS	В	В	А					В	А		А	
Approach Delay		15.3						4.9			5.0	
Approach LOS		В						А			А	
Queue Length 50th (ft)	14	43	0					1	0		3	
Queue Length 95th (ft)	43	84	0					5	0		6	
Internal Link Dist (ft)		399			413			244			148	
Turn Bay Length (ft)	150											
Base Capacity (vph)	774	1421	807					815	807		1476	
Starvation Cap Reductn	0	0	0					0	0		0	
Spillback Cap Reductn	0	0	0					0	0		0	
Storage Cap Reductn	0	0	0					0	0		0	
Reduced v/c Ratio	0.09	0.24	0.01					0.00	0.01		0.09	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 40).5											
Natural Cycle: 40												
Control Type: Semi Act-Ur	ncoord											
Maximum v/c Ratio: 0.31												
Intersection Signal Delay:	12.7			Ir	ntersectior	1 LOS: B						
Intersection Capacity Utiliz)		IC	CU Level o	of Service	А					
Analysis Period (min) 15												
	NYS Route 1	131 & NY	S Route 3	7 East								
#13 #16			#13 #16					#13 #16				

#13 #16	#13 #16	#13 #16	
20 s	20 s	20 s	

Major/Minor	Minor1	Ν	lajor1	Ν	/lajor2	
Conflicting Flow All	169	60	0	0	71	0
Stage 1	60	-	-	-	-	-
Stage 2	109	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	821	1005	-	-	1529	-
Stage 1	963	-	-	-	-	-
Stage 2	916	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	808	1005	-	-	1529	-
Mov Cap-2 Maneuver	808	-	-	-	-	-
Stage 1	963	-	-	-	-	-
Stage 2	901	-	-	-	-	-
Approach	WB		NB		SB	

Approach	WB	NB	SB
HCM Control Delay, s	9.2	0	2
HCM LOS	А		

Minor Lane/Major Mvmt	NBT	NBRW	BLn1	SBL	SBT
Capacity (veh/h)	-	-	896	1529	-
HCM Lane V/C Ratio	-	- ().051	0.015	-
HCM Control Delay (s)	-	-	9.2	7.4	0
HCM Lane LOS	-	-	А	А	Α
HCM 95th %tile Q(veh)	-	-	0.2	0	-

01/31/2023

Intersection						
Int Delay, s/veh	2.6					
•						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		4			्स
Traffic Vol, veh/h	10	20	45	10	20	59
Future Vol, veh/h	10	20	45	10	20	59
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	22	49	11	22	64
Heavy Vehicles, %	2	2	2	2	2	2

Major/Minor	Minor1	Ν	1ajor1	Ν	/lajor2	
Conflicting Flow All	163	55	0	0	60	0
Stage 1	55	-	-	-	-	-
Stage 2	108	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	828	1012	-	-	1544	-
Stage 1	968	-	-	-	-	-
Stage 2	916	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	816	1012	-	-	1544	-
Mov Cap-2 Maneuver	816	-	-	-	-	-
Stage 1	968	-	-	-	-	-
Stage 2	902	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	9	0	1.9
HCM LOS	А		

Minor Lane/Major Mvmt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)	-	-	937	1544	-
HCM Lane V/C Ratio	-	-	0.035	0.014	-
HCM Control Delay (s)	-	-	9	7.4	0
HCM Lane LOS	-	-	Α	А	Α
HCM 95th %tile Q(veh)	-	-	0.1	0	-

5.8

Intersection

Int Delay, s/veh

Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		\$			\$			\$			4	
Traffic Vol, veh/h	25	1	31	0	2	0	1	9	33	44	8	0
Future Vol, veh/h	25	1	31	0	2	0	1	9	33	44	8	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	75	75	75	75	75	75	75	75	75	75	75	75
Heavy Vehicles, %	7	20	6	0	17	0	100	18	0	0	20	0
Mvmt Flow	33	1	41	0	3	0	1	12	44	59	11	0

Major/Minor	Minor1		Ν	/linor2		ſ	Major1		Ν	lajor2			
Conflicting Flow All	167	165	34	186	187	11	11	0	0	56	0	0	
Stage 1	36	36	-	129	129	-	-	-	-	-	-	-	
Stage 2	131	129	-	57	58	-	-	-	-	-	-	-	
Critical Hdwy	7.17	6.7	6.26	7.1	6.67	6.2	5.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.17	5.7	-	6.1	5.67	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.17	5.7	-	6.1	5.67	-	-	-	-	-	-	-	
Follow-up Hdwy	3.563	4.18	3.354	3.5	4.153	3.3	3.1	-	-	2.2	-	-	
Pot Cap-1 Maneuver	786	696	1028	779	682	1076	1149	-	-	1562	-	-	
Stage 1	967	831	-	880	761	-	-	-	-	-	-	-	
Stage 2	861	756	-	960	818	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	760	669	1028	724	655	1076	1149	-	-	1562	-	-	
Mov Cap-2 Maneuver	760	669	-	724	655	-	-	-	-	-	-	-	
Stage 1	966	830	-	879	732	-	-	-	-	-	-	-	
Stage 2	825	727	-	919	817	-	-	-	-	-	-	-	

Approach	NB	SB	NE	SW	
HCM Control Delay, s	9.5	10.5	0.2	6.3	
HCM LOS	А	В			

Minor Lane/Major Mvmt	NEL	NET	NER	NBLn1	SBLn1	SWL	SWT	SWR
Capacity (veh/h)	1149	-	-	883	655	1562	-	-
HCM Lane V/C Ratio	0.001	-	-	0.086	0.004	0.038	-	-
HCM Control Delay (s)	8.1	0	-	9.5	10.5	7.4	0	-
HCM Lane LOS	А	А	-	Α	В	Α	Α	-
HCM 95th %tile Q(veh)	0	-	-	0.3	0	0.1	-	-

01/31/2023

4

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\$			\$			\$			4		
Traffic Vol, veh/h	17	19	70	0	26	5	1	166	1	2	74	15	
Future Vol, veh/h	17	19	70	0	26	5	1	166	1	2	74	15	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	73	73	73	73	73	73	73	73	73	73	92	92	
Heavy Vehicles, %	19	25	0	0	19	0	0	0	0	0	0	8	
Mvmt Flow	23	26	96	0	36	7	1	227	1	3	80	16	

Major/Minor	Minor2		Ν	linor1		1	/lajor1		Ν	lajor2			
Conflicting Flow All	345	324	88	385	332	228	96	0	0	228	0	0	
Stage 1	94	94	-	230	230	-	-	-	-	-	-	-	
Stage 2	251	230	-	155	102	-	-	-	-	-	-	-	
Critical Hdwy	7.29	6.75	6.2	7.1	6.69	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Follow-up Hdwy	3.671	4.225	3.3	3.5	4.171	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	578	558	976	577	561	816	1510	-	-	1352	-	-	
Stage 1	873	774	-	777	684	-	-	-	-	-	-	-	
Stage 2	717	673	-	852	779	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	544	556	976	501	559	816	1510	-	-	1352	-	-	
Mov Cap-2 Maneuver	544	556	-	501	559	-	-	-	-	-	-	-	
Stage 1	872	772	-	776	683	-	-	-	-	-	-	-	
Stage 2	673	672	-	741	777	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	10.7	11.6	0	0.2	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	1510	-	-	773	589	1352	-	-
HCM Lane V/C Ratio	0.001	-	-	0.188	0.072	0.002	-	-
HCM Control Delay (s)	7.4	0	-	10.7	11.6	7.7	0	-
HCM Lane LOS	А	А	-	В	В	Α	Α	-
HCM 95th %tile Q(veh)	0	-	-	0.7	0.2	0	-	-

Future Build AM Peak 13: NYS Route 131 & NYS Route 37 West

01/31/2023

	≯	+	*	4	ţ	*	•	t	*	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				٦	^	1	۲	•			†	1
Traffic Volume (vph)	0	0	0	1	215	61	3	107	0	0	91	53
Future Volume (vph)	0	0	0	1	215	61	3	107	0	0	91	53
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	275		0	0		0	0		0
Storage Lanes	0		0	1		1	1		0	0		1
Taper Length (ft)	25		•	25		•	25		•	25		
Satd. Flow (prot)	0	0	0	1805	3195	1615	1805	1900	0	0	1900	1615
Flt Permitted	Ŭ	Ū	Ŭ	0.950	0.00		0.950		•	Ū		
Satd. Flow (perm)	0	0	0	1805	3195	1615	1805	1900	0	0	1900	1615
Right Turn on Red	v	Ŭ	Yes	1000	0100	Yes	1000	1000	Yes	v	1000	Yes
Satd. Flow (RTOR)			100			200			100			200
Link Speed (mph)		30			30	200		30			30	200
Link Distance (ft)		453			483			228			523	
Travel Time (s)		10.3			11.0			5.2			11.9	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles (%)	0.05	0.03	0.05	0.05	13%	0.05	0.05	0.05	0.03	0.05	0.03	0.03
Shared Lane Traffic (%)	0 /0	0 70	0 /0	0 70	1370	0 70	0 /0	0 /0	0 70	0 /0	070	070
Lane Group Flow (vph)	0	0	0	1	259	73	4	129	0	0	110	64
Enter Blocked Intersection	No		No	No	No	No	4 No	No	No	No	No	No
		No										
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0 16			0 16			0			0 16	
Crosswalk Width(ft)		01			01			16			01	
Two way Left Turn Lane	4 00	4 00	4 0 0	4.00	4 00	4 00	4.00	4 00	4.00	4 00	4 00	4 00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15	0	9	15	•	9	15	•	9
Number of Detectors				1	2	1	1	2			2	1
Detector Template				Left	Thru	Right	Left	Thru			Thru	Right
Leading Detector (ft)				20	100	20	20	100			100	20
Trailing Detector (ft)				0	0	0	0	0			0	0
Detector 1 Position(ft)				0	0	0	0	0			0	0
Detector 1 Size(ft)				20	6	20	20	6			6	20
Detector 1 Type				Cl+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex			Cl+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 1 Queue (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 1 Delay (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 2 Position(ft)					94			94			94	
Detector 2 Size(ft)					6			6			6	
Detector 2 Type					Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)					0.0			0.0			0.0	
Turn Type				Perm	NA	Perm	Split	NA			NA	Prot
Protected Phases					1		4	4			3	3
Permitted Phases				1		1						
Detector Phase				1	1	1	4	4			3	3
Switch Phase												
Minimum Initial (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0

Lanes, Volumes, Timings C&S Engineers

Future Build AM Peak 13: NYS Route 131 & NYS Route 37 West

	۲	+	\rightarrow	4	+	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)				12.0	12.0	12.0	12.0	12.0			12.0	12.0
Total Split (s)				20.0	20.0	20.0	20.0	20.0			20.0	20.0
Total Split (%)				33.3%	33.3%	33.3%	33.3%	33.3%			33.3%	33.3%
Maximum Green (s)				13.0	13.0	13.0	13.0	13.0			13.0	13.0
Yellow Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
All-Red Time (s)				2.0	2.0	2.0	2.0	2.0			2.0	2.0
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)				7.0	7.0	7.0	7.0	7.0			7.0	7.0
Lead/Lag							Lag	Lag			Lead	Lead
Lead-Lag Optimize?							Yes	Yes			Yes	Yes
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Recall Mode				None	None	None	None	None			None	None
Act Effct Green (s)				17.2	17.2	17.2	10.3	10.3			10.1	10.1
Actuated g/C Ratio				0.39	0.39	0.39	0.23	0.23			0.23	0.23
v/c Ratio				0.00	0.21	0.10	0.01	0.29			0.26	0.12
Control Delay				17.0	17.2	0.3	31.7	32.5			21.0	0.5
Queue Delay				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Delay				17.0	17.2	0.3	31.7	32.6			21.0	0.5
LOS				В	В	А	С	С			С	A
Approach Delay					13.5			32.5			13.5	
Approach LOS					В			С			В	
Queue Length 50th (ft)				0	33	0	1	46			30	0
Queue Length 95th (ft)				3	64	0	m7	94			64	0
Internal Link Dist (ft)		373			403			148			443	
Turn Bay Length (ft)				275								
Base Capacity (vph)				723	1281	767	723	761			761	767
Starvation Cap Reductn				0	0	0	0	33			0	0
Spillback Cap Reductn				0	0	0	0	0			0	0
Storage Cap Reductn				0	0	0	0	0			0	0
Reduced v/c Ratio				0.00	0.20	0.10	0.01	0.18			0.14	0.08
Intersection Summary												
Area Type: Othe	r											
Cycle Length: 60												
Actuated Cycle Length: 44.4												
Natural Cycle: 40												
Control Type: Semi Act-Uncoord												
Maximum v/c Ratio: 0.29												
Intersection Signal Delay: 17.4					ntersectio							
Intersection Capacity Utilization	31.8%			(CU Level	of Service	θA					
Analysis Period (min) 15												
m Volume for 95th percentile q	ueue is	metered	i by upst	ream sigr	nal.							
				7 14/								

Splits and Phases: 13: NYS Route 131 & NYS Route 37 West

Lanes, Volumes, Timings C&S Engineers Future Build AM Peak 16: NYS Route 131 & NYS Route 37 East

01/31/2023

	۶	+	\mathbf{r}	•	+	*	≺	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	- † †	1					↑	1			
Traffic Volume (vph)	105	263	2	0	0	0	0	1	3	91	1	0
Future Volume (vph)	105	263	2	0	0	0	0	1	3	91	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		0	0		0	0		0	0		0
Storage Lanes	1		1	0		0	0		1	0		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	1805	3312	1615	0	0	0	0	1900	1615	0	3440	0
Flt Permitted	0.950										0.953	
Satd. Flow (perm)	1805	3312	1615	0	0	0	0	1900	1615	0	3440	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			200						200			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		479			493			324			228	
Travel Time (s)		10.9			11.2			7.4			5.2	
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles (%)	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	133	333	3	0	0	0	0	1	4	0	116	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	Ŭ		12	Ŭ		0	Ŭ		0	Ŭ
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1					2	1	1	2	
Detector Template	Left	Thru	Right					Thru	Right	Left	Thru	
Leading Detector (ft)	20	100	20					100	20	20	100	
Trailing Detector (ft)	0	0	0					0	0	0	0	
Detector 1 Position(ft)	0	0	0					0	0	0	0	
Detector 1 Size(ft)	20	6	20					6	20	20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex					Cl+Ex	CI+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 2 Position(ft)		94						94			94	
Detector 2 Size(ft)		6						6			6	
Detector 2 Type		Cl+Ex						Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0						0.0			0.0	
Turn Type	Split	NA	Prot					NA	Prot	Split	NA	
Protected Phases	1	1	1					4	4	3	3	
Permitted Phases	•									Ű	Ŭ	
Detector Phase	1	1	1					4	4	3	3	
Switch Phase	•									Ű	Ŭ	
Minimum Initial (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
— ———————————————————————————————————	5.0	0.0	0.0					0.0	0.0	0.0	0.0	

Lanes, Volumes, Timings C&S Engineers

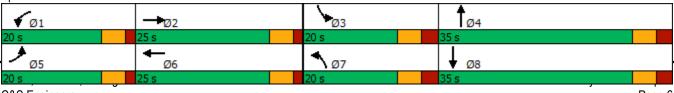
Future Build AM Peak 16: NYS Route 131 & NYS Route 37 East

01/31/2023

	٦	-	\mathbf{i}	•	+	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	12.0	12.0	12.0					12.0	12.0	12.0	12.0	
Total Split (s)	20.0	20.0	20.0					20.0	20.0	20.0	20.0	
Total Split (%)	33.3%	33.3%	33.3%					33.3%	33.3%	33.3%	33.3%	
Maximum Green (s)	13.0	13.0	13.0					13.0	13.0	13.0	13.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0					7.0	7.0		7.0	
Lead/Lag								Lag	Lag	Lead	Lead	
Lead-Lag Optimize?								Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					None	None	None	None	
Act Effct Green (s)	17.2	17.2	17.2					10.3	10.3		10.1	
Actuated g/C Ratio	0.39	0.39	0.39					0.23	0.23		0.23	
v/c Ratio	0.19	0.26	0.00					0.00	0.01		0.15	
Control Delay	18.5	17.3	0.0					18.0	0.0		5.2	
Queue Delay	0.0	0.0	0.0					0.0	0.0		0.0	
Total Delay	18.5	17.3	0.0					18.0	0.0		5.2	
LOS	В	В	А					В	А		А	
Approach Delay		17.5						3.6			5.2	
Approach LOS		В						А			А	
Queue Length 50th (ft)	32	43	0					0	0		3	
Queue Length 95th (ft)	71	76	0					3	0		5	
Internal Link Dist (ft)		399			413			244			148	
Turn Bay Length (ft)	150											
Base Capacity (vph)	723	1328	767					761	767		1379	
Starvation Cap Reductn	0	0	0					0	0		0	
Spillback Cap Reductn	0	0	0					0	0		0	
Storage Cap Reductn	0	0	0					0	0		0	
Reduced v/c Ratio	0.18	0.25	0.00					0.00	0.01		0.08	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 44	1.4											
Natural Cycle: 40												
Control Type: Semi Act-Ur	ncoord											
Maximum v/c Ratio: 0.29												
Intersection Signal Delay:				lr	ntersection	n LOS: B						
Intersection Capacity Utiliz	zation 34.0%			IC	CU Level	of Service	А					
Analysis Period (min) 15												
Splits and Phases: 16: I	NYS Route 1	31 & NY	S Route 3	7 East								
#13 #16			#13 #16					#13 #16				

#13 #16	#13 #16	#13 #16	
20 s	20 s	20 s	

Future Build AM Peak 21:


	٨	-	\mathbf{r}	4	+	•	1	t	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	A1⊅		<u>۲</u>	A1⊅		<u>۲</u>	el 👘		7	el 🕺	
Traffic Volume (vph)	27	169	62	61	129	29	69	202	73	61	161	26
Future Volume (vph)	27	169	62	61	129	29	69	202	73	61	161	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	200		0	150		0	0		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	1752	3026	0	1421	3108	0	1752	1751	0	1671	1834	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1752	3026	0	1421	3108	0	1752	1751	0	1671	1834	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		47			24			18			8	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		546			510			451			340	
Travel Time (s)		12.4			11.6			10.3			7.7	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles (%)	3%	18%	5%	27%	13%	13%	3%	1%	13%	8%	1%	4%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	31	265	0	70	181	0	79	316	0	70	215	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	J -		12	J -		12	J -		12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases												
Detector Phase	5	2		1	6		7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		5.0	5.0		5.0	5.0	

Lanes, Volumes, Timings C&S Engineers

Future Build AM Peak 21:

01/31/2023

	≯	-	$\mathbf{\hat{z}}$	4	-	•	1	1	۲	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	23.1	20.0		10.1	24.1		11.1	24.1		11.1	27.1	
Total Split (s)	20.0	25.0		20.0	25.0		20.0	35.0		20.0	35.0	
Total Split (%)	20.0%	25.0%		20.0%	25.0%		20.0%	35.0%		20.0%	35.0%	
Maximum Green (s)	14.9	19.9		14.9	19.9		13.9	28.9		13.9	28.9	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.6		3.6	3.6	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.5	2.5		2.5	2.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.1		5.1	5.1		6.1	6.1		6.1	6.1	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	Max		None	Max		None	None		None	None	
Walk Time (s)		7.0			7.0			7.0			7.0	
Flash Dont Walk (s)		13.0			12.0			9.0			14.0	
Pedestrian Calls (#/hr)		0			0			0			0	
Act Effct Green (s)	7.5	22.0		9.7	28.8		9.4	18.5		9.2	18.3	
Actuated g/C Ratio	0.10	0.29		0.13	0.38		0.12	0.24		0.12	0.24	
v/c Ratio	0.18	0.29		0.39	0.15		0.37	0.72		0.35	0.48	
Control Delay	40.6	23.6		42.0	19.5		40.8	36.6		41.0	29.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	40.6	23.6		42.0	19.5		40.8	36.6		41.0	29.9	
LOS	D	С		D	В		D	D		D	С	
Approach Delay		25.4			25.8			37.5			32.6	
Approach LOS		С			С			D			С	
Queue Length 50th (ft)	15	45		33	23		37	137		33	89	
Queue Length 95th (ft)	46	97		80	67		87	241		80	164	
Internal Link Dist (ft)		466			430			371			260	
Turn Bay Length (ft)	200			200			150					
Base Capacity (vph)	380	915		308	1198		355	747		338	777	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.08	0.29		0.23	0.15		0.22	0.42		0.21	0.28	
Intersection Summary												
Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 75.0	6											
Natural Cycle: 90												
Control Type: Semi Act-Uno	coord											
Maximum v/c Ratio: 0.72												
Intersection Signal Delay: 3	51.0			Ir	ntersectior	LOS: C						
Intersection Capacity Utiliza)		10	CU Level o	of Service	eΑ					
Analysis Period (min) 15												
Splits and Phases: 21:												
opino unu i naoco. 21.												

Future Build AM Peak 26: NYS Route 37 & NYS Route 56/Andrews Street

01/31/2023

	۶	-	\mathbf{F}	4	+	•	•	Ť	~	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्च	7		4		ሻ	ef 👘		ሻ	ef 👘	
Traffic Volume (vph)	34	139	102	15	155	36	50	79	14	45	117	57
Future Volume (vph)	34	139	102	15	155	36	50	79	14	45	117	57
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		175	0		0	0		150	125		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	0	1710	1583	0	1655	0	1703	1736	0	1597	1669	0
Flt Permitted		0.901			0.954		0.950			0.692		
Satd. Flow (perm)	0	1556	1583	0	1586	0	1703	1736	0	1164	1669	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			121		12			11			31	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		490			481			361			360	
Travel Time (s)		11.1			10.9			8.2			8.2	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	2%	12%	2%	4%	15%	0%	6%	6%	12%	13%	4%	17%
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	186	110	0	222	0	54	100	0	48	187	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			12			12	. ugut
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2		1	2		1	2	-
Detector Template	Left	Thru	Right	Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel		01 2/	01 2/	01 2/	01 2/		01 24				01 2/	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.0	94	0.0	0.0	94		0.0	94		0.0	94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OFFER			ONEX			OI LA			OFER	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA	Perm	Perm	NA		Prot	NA		pm+pt	NA	
Protected Phases	1 0111	4	1 0111	1 0111	8		5	2		1 1	6	
Permitted Phases	4	т	4	8	0		5	2		6	U	
Detector Phase	4	4	4	8	8		5	2		1	6	
Switch Phase	T	T	T	U	U		5	2		1	U	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	

Lanes, Volumes, Timings C&S Engineers

Future Build AM Peak 26: NYS Route 37 & NYS Route 56/Andrews Street

01/31/2023

	۶	-	\mathbf{F}	4	+	*	1	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Split (s)	24.5	24.5	24.5	24.5	24.5		11.5	24.5		11.5	24.5	
Total Split (s)	30.0	30.0	30.0	30.0	30.0		20.0	40.0		20.0	40.0	
Total Split (%)	33.3%	33.3%	33.3%	33.3%	33.3%		22.2%	44.4%		22.2%	44.4%	
Maximum Green (s)	23.5	23.5	23.5	23.5	23.5		13.5	33.5		13.5	33.5	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.5	6.5		6.5		6.5	6.5		6.5	6.5	
Lead/Lag Lead-Lag Optimize?							Lead Yes	Lag Yes		Lead Yes	Lag Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None		None	None		None	None	
Act Effct Green (s)	NULLE	14.3	14.3	NULLE	14.5		10.0	15.2		15.6	13.0	
Actuated g/C Ratio		0.35	0.35		0.35		0.24	0.37		0.38	0.32	
v/c Ratio		0.34	0.00		0.39		0.13	0.15		0.09	0.34	
Control Delay		18.3	4.5		17.9		22.0	13.7		8.4	16.9	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		18.3	4.5		17.9		22.0	13.7		8.4	16.9	
LOS		В	А		В		С	В		А	В	
Approach Delay		13.2			17.9			16.6			15.1	
Approach LOS		В			В			В			В	
Queue Length 50th (ft)		45	0		52		14	12		6	39	
Queue Length 95th (ft)		111	28		126		48	59		23	102	
Internal Link Dist (ft)		410			401			281			280	
Turn Bay Length (ft)			175							125		
Base Capacity (vph)		963	1026		987		751	1331		866	1285	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.19	0.11		0.22		0.07	0.08		0.06	0.15	
Intersection Summary												
	other											
Cycle Length: 90												
Actuated Cycle Length: 41.2												
Natural Cycle: 65	a ualita a fia al	1										
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 0.39	1				ntersection							
Intersection Signal Delay: 15. Intersection Capacity Utilization					CU Level		Δ					
Analysis Period (min) 15	011 00. 1 /0	1		K			5 A					
Splits and Phases: 26: NYS	S Route ?	87 & NYS	Route 56	/Androw	Street							
	♠				SUCCI							
Ø1	Ø	2						₩ Ø4				

Ø1	T _{Ø2}	<i>√</i> 104
20 s	40 s	30 s
▲ Ø5	Ø6	₹Ø8
20 s	40 s	30 s

Lanes, Volumes, Timings C&S Engineers 5.4

Intersection

Int Delay, s/veh

Movement	NBL	NBT	NBR	SBL	SBT	SBR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		÷			\$			\$			÷	
Traffic Vol, veh/h	33	1	22	0	3	1	1	2	30	48	37	0
Future Vol, veh/h	33	1	22	0	3	1	1	2	30	48	37	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	69	69	69	69	69	69	69	69	69	69	69	69
Heavy Vehicles, %	0	0	0	0	33	0	0	0	0	4	0	0
Mvmt Flow	48	1	32	0	4	1	1	3	43	70	54	0

Major/Minor	Minor1		Ν	1inor2		M	Major1		М	ajor2			
Conflicting Flow All	224	221	25	237	242	54	54	0	0	46	0	0	
Stage 1	27	27	-	194	194	-	-	-	-	-	-	-	
Stage 2	197	194	-	43	48	-	-	-	-	-	-	-	
Critical Hdwy	7.1	6.5	6.2	7.1	6.83	6.2	4.1	-	-	4.14	-	-	
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.83	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.83	-	-	-	-	-	-	-	
Follow-up Hdwy	3.5	4	3.3	3.5	4.297	3.3	2.2	-	- 2	2.236	-	-	
Pot Cap-1 Maneuver	736	681	1057	722	609	1019	1564	-	-	1549	-	-	
Stage 1	996	877	-	812	685	-	-	-	-	-	-	-	
Stage 2	809	744	-	976	798	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	r 704	648	1057	674	580	1019	1564	-	-	1549	-	-	
Mov Cap-2 Maneuver	r 704	648	-	674	580	-	-	-	-	-	-	-	
Stage 1	995	876	-	811	653	-	-	-	-	-	-	-	
Stage 2	765	709	-	944	797	-	-	-	-	-	-	-	

Approach	NB	SB	NE	SW	
HCM Control Delay, s	9.9	10.6	0.2	4.2	
HCM LOS	А	В			

Minor Lane/Major Mvmt	NEL	NET	NER N	BLn1	SBLn1	SWL	SWT	SWR
Capacity (veh/h)	1564	-	-	809	650	1549	-	-
HCM Lane V/C Ratio	0.001	-	-	0.1	0.009	0.045	-	-
HCM Control Delay (s)	7.3	0	-	9.9	10.6	7.4	0	-
HCM Lane LOS	А	А	-	Α	В	Α	А	-
HCM 95th %tile Q(veh)	0	-	-	0.3	0	0.1	-	-

4.9

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			÷			\$			÷	
Traffic Vol, veh/h	8	24	73	0	43	4	1	137	1	4	172	97
Future Vol, veh/h	8	24	73	0	43	4	1	137	1	4	172	97
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	49	49	49	73	73	73	73	73	73	73	92	92
Heavy Vehicles, %	19	25	0	0	19	0	0	0	0	0	0	8
Mvmt Flow	16	49	149	0	59	5	1	188	1	5	187	105

Major/Minor	Minor2		Ν	1inor1		N	Major1		Ν	/lajor2			
Conflicting Flow All	473	441	240	540	493	189	292	0	0	189	0	0	
Stage 1	250	250	-	191	191	-	-	-	-	-	-	-	
Stage 2	223	191	-	349	302	-	-	-	-	-	-	-	
Critical Hdwy	7.29	6.75	6.2	7.1	6.69	6.2	4.1	-	-	4.1	-	-	
Critical Hdwy Stg 1	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.29	5.75	-	6.1	5.69	-	-	-	-	-	-	-	
Follow-up Hdwy	3.671	4.225	3.3	3.5	4.171	3.3	2.2	-	-	2.2	-	-	
Pot Cap-1 Maneuver	474	477	804	456	453	858	1281	-	-	1397	-	-	
Stage 1	718	659	-	815	711	-	-	-	-	-	-	-	
Stage 2	743	701	-	671	635	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	422	475	804	341	451	858	1281	-	-	1397	-	-	
Mov Cap-2 Maneuver	422	475	-	341	451	-	-	-	-	-	-	-	
Stage 1	717	656	-	814	710	-	-	-	-	-	-	-	
Stage 2	676	700	-	504	632	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	13.1	13.9	0.1	0.1	
HCM LOS	В	В			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR
Capacity (veh/h)	1281	-	-	655	470	1397	-	-
HCM Lane V/C Ratio	0.001	-	-	0.327	0.137	0.004	-	-
HCM Control Delay (s)	7.8	0	-	13.1	13.9	7.6	0	-
HCM Lane LOS	А	А	-	В	В	Α	А	-
HCM 95th %tile Q(veh)	0	-	-	1.4	0.5	0	-	-

02/01/2023

Intersection						
Int Delay, s/veh	3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		4			्स
Traffic Vol, veh/h	21	21	34	21	21	60
Future Vol, veh/h	21	21	34	21	21	60
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	23	23	37	23	23	65

Major/Minor	Minor1	Ν	lajor1	Μ	lajor2	
Conflicting Flow All	160	49	0	0	60	0
Stage 1	49	-	-	-	-	-
Stage 2	111	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	- 1	2.218	-
Pot Cap-1 Maneuver	831	1020	-	-	1544	-
Stage 1	973	-	-	-	-	-
Stage 2	914	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	819	1020	-	-	1544	-
Mov Cap-2 Maneuver	819	-	-	-	-	-
Stage 1	973	-	-	-	-	-
Stage 2	900	-	-	-	-	-
Annroach	W/R		NR		SB	

Approach	WB	NB	SB	
HCM Control Delay, s	9.2	0	1.9	
HCM LOS	А			

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT
Capacity (veh/h)	-	-	909	1544	-
HCM Lane V/C Ratio	-	-	0.05	0.015	-
HCM Control Delay (s)	-	-	9.2	7.4	0
HCM Lane LOS	-	-	А	А	А
HCM 95th %tile Q(veh)	-	-	0.2	0	-

02/01/2	023
---------	-----

Intersection						
Int Delay, s/veh	2.8					
			NDT	NDD		ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	- ¥		- 1 2			्र
Traffic Vol, veh/h	10	20	25	10	20	61
Future Vol, veh/h	10	20	25	10	20	61
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	22	27	11	22	66

Major/Minor	Minor1	Ν	1ajor1	Ν	/lajor2		
Conflicting Flow All	143	33	0	0	38	0	
Stage 1	33	-	-	-	-	-	
Stage 2	110	-	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy		3.318	-		2.218	-	
Pot Cap-1 Maneuver	850	1041	-	-	1572	-	
Stage 1	989	-	-	-	-	-	
Stage 2	915	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	837	1041	-	-	1572	-	
Mov Cap-2 Maneuver	837	-	-	-	-	-	
Stage 1	989	-	-	-	-	-	
Stage 2	901	-	-	-	-	-	
•					~~		

Approach	WB	NB	SB
HCM Control Delay, s	8.9	0	1.8
HCM LOS	А		

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT
Capacity (veh/h)	-	-	963	1572	-
HCM Lane V/C Ratio	-	-	0.034	0.014	-
HCM Control Delay (s)	-	-	8.9	7.3	0
HCM Lane LOS	-	-	А	А	А
HCM 95th %tile Q(veh)	-	-	0.1	0	-

Future Build PM Peak 13: NYS Route 131 & NYS Route 37 West

02/01/2023

	٦	-	\mathbf{F}	4	+	*	•	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ľ	<u></u>	1	1	•			•	1
Traffic Volume (vph)	0	0	0	3	378	69	3	68	0	0	122	123
Future Volume (vph)	0	0	0	3	378	69	3	68	0	0	122	123
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	275		0	0		0	0		0
Storage Lanes	0		0	1		1	1		0	0		1
Taper Length (ft)	25		-	25			25		-	25		
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt						0.850						0.850
Flt Protected				0.950		0.000	0.950					0.000
Satd. Flow (prot)	0	0	0	1805	3195	1615	1805	1900	0	0	1900	1615
Flt Permitted	Ű	Ŭ	Ū	0.950	0100	1010	0.950	1000	Ŭ	Ū	1000	1010
Satd. Flow (perm)	0	0	0	1805	3195	1615	1805	1900	0	0	1900	1615
Right Turn on Red	U	0	Yes	1000	0100	Yes	1000	1500	Yes	U	1500	Yes
Satd. Flow (RTOR)			103			200			103			200
Link Speed (mph)		30			30	200		30			30	200
Link Distance (ft)		453			483			228			523	
Travel Time (s)		10.3			11.0			5.2			11.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
	0.92	0.92	0.92	0.92	13%	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)			0%									
Adj. Flow (vph)	0	0	0	3	411	75	3	74	0	0	133	134
Shared Lane Traffic (%)	0	0	0	<u></u>	444	75	2	74	0	0	400	124
Lane Group Flow (vph)	0	0	0	3	411	75	3	74	0	0	133	134
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors				1	2	1	1	2			2	1
Detector Template				Left	Thru	Right	Left	Thru			Thru	Right
Leading Detector (ft)				20	100	20	20	100			100	20
Trailing Detector (ft)				0	0	0	0	0			0	0
Detector 1 Position(ft)				0	0	0	0	0			0	0
Detector 1 Size(ft)				20	6	20	20	6			6	20
Detector 1 Type				CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex			CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 1 Queue (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 1 Delay (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Detector 2 Position(ft)					94			94			94	
Detector 2 Size(ft)					6			6			6	
Detector 2 Type					Cl+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)					0.0			0.0			0.0	
Turn Type				Perm	NA	Perm	Split	NA			NA	Prot
Protected Phases					1		4	4			3	3
											<u> </u>	

Future Build PM Peak 13: NYS Route 131 & NYS Route 37 West

02/01/2023	3
------------	---

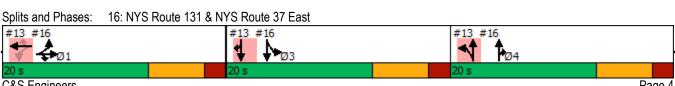
	۶	-	\mathbf{F}	4	-	•	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases				1		1						
Detector Phase				1	1	1	4	4			3	3
Switch Phase												
Minimum Initial (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
Minimum Split (s)				12.0	12.0	12.0	12.0	12.0			12.0	12.0
Total Split (s)				20.0	20.0	20.0	20.0	20.0			20.0	20.0
Total Split (%)				33.3%	33.3%	33.3%	33.3%	33.3%			33.3%	33.3%
Maximum Green (s)				13.0	13.0	13.0	13.0	13.0			13.0	13.0
Yellow Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
All-Red Time (s)				2.0	2.0	2.0	2.0	2.0			2.0	2.0
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)				7.0	7.0	7.0	7.0	7.0			7.0	7.0
Lead/Lag							Lag	Lag			Lead	Lead
Lead-Lag Optimize?							Yes	Yes			Yes	Yes
Vehicle Extension (s)				3.0	3.0	3.0	3.0	3.0			3.0	3.0
Recall Mode				None	None	None	None	None			None	None
Act Effct Green (s)				16.8	16.8	16.8	8.9	8.9			10.1	10.1
Actuated g/C Ratio				0.41	0.41	0.41	0.22	0.22			0.25	0.25
v/c Ratio				0.00	0.31	0.10	0.01	0.18			0.28	0.24
Control Delay				16.3	15.9	0.2	31.3	30.4			19.4	2.5
Queue Delay				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Delay				16.3	15.9	0.2	31.3	30.4			19.4	2.5
LOS				В	В	А	С	С			В	А
Approach Delay					13.5			30.5			10.9	
Approach LOS					В			С			В	
Queue Length 50th (ft)				1	53	0	1	26			35	0
Queue Length 95th (ft)				6	104	0	m9	65			78	16
Internal Link Dist (ft)		373			403			148			443	
Turn Bay Length (ft)				275								
Base Capacity (vph)				772	1367	805	772	813			813	805
Starvation Cap Reductn				0	0	0	0	0			0	0
Spillback Cap Reductn				0	0	0	0	0			0	0
Storage Cap Reductn				0	0	0	0	0			0	0
Reduced v/c Ratio				0.00	0.30	0.09	0.00	0.09			0.16	0.17
Intersection Summary												
Area Type: Oth	er											
Cycle Length: 60												
Actuated Cycle Length: 40.8												
Natural Cycle: 40												
Control Type: Semi Act-Uncoor	d											
Maximum v/c Ratio: 0.31												
Intersection Signal Delay: 14.3				Ir	ntersectio	n LOS: B						
	ection Capacity Utilization 39.7% ICU Level of Service A											
Analysis Period (min) 15												
m Volume for 95th percentile	aueue i	s meterec	by upst	ream sigr	nal.							

Splits and Phases: 13: NYS Route 131 & NYS Route 37 West

Future Build PM Peak 16: NYS Route 131 & NYS Route 37 East

|--|

	۶	+	\mathbf{r}	4	Ļ	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	††	1					†	1		₹ħ	
Traffic Volume (vph)	68	305	4	0	0	0	0	2	5	0	3	0
Future Volume (vph)	68	305	4	0	0	0	0	2	5	0	3	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150		0	0		0	0		0	0		0
Storage Lanes	1		1	0		0	0		1	0		0
Taper Length (ft)	25			25		· ·	25		•	25		
Lane Util. Factor	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00
Frt			0.850						0.850	0.00		
Flt Protected	0.950		0.000						0.000			
Satd. Flow (prot)	1805	3312	1615	0	0	0	0	1900	1615	0	3610	0
Flt Permitted	0.950	0012	1010	Ŭ	Ű	Ŭ	Ŭ	1000	1010	Ŭ	0010	Ū
Satd. Flow (perm)	1805	3312	1615	0	0	0	0	1900	1615	0	3610	0
Right Turn on Red	1000	0012	Yes	Ŭ	Ű	Yes	Ŭ	1000	Yes	Ŭ	0010	Yes
Satd. Flow (RTOR)			200			100			200			100
Link Speed (mph)		30	200		30			30	200		30	
Link Distance (ft)		479			493			324			228	
Travel Time (s)		10.9			11.2			7.4			5.2	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles (%)	0.00	9%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Adj. Flow (vph)	77	347	5	0 /8	0 /8	0 /8	0 /0	2	6	0 /8	3	0 /8
Shared Lane Traffic (%)	11	547	5	0	0	0	0	2	0	0	5	0
Lane Group Flow (vph)	77	347	5	0	0	0	0	2	6	0	3	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	12	Ngn	Leit	12	Ngn	Leit	0	Night	Leit	0	Right
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	13	2	1	15		9	15	2	1	1	2	9
Detector Template	Left	Thru	Right					∠ Thru	Right	Left	Z Thru	
Leading Detector (ft)	20	100	20					100	20	20	100	
Trailing Detector (ft)	20	001	20					001	20	20	0	
Detector 1 Position(ft)	0	0	0					0	0	0	0	
Detector 1 Size(ft)	20	6	20					6	20	20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex					CI+Ex	CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Detector 2 Position(ft)	0.0	0.0 94	0.0					0.0 94	0.0	0.0	0.0 94	
Detector 2 Size(ft)		94 6						94 6			94 6	
· · · · · · · · · · · · · · · · · · ·		о Cl+Ex						б Cl+Ex			о Cl+Ex	
Detector 2 Type Detector 2 Channel		OI+EX						UI+EX			U+⊏X	
		0.0						0.0			0.0	
Detector 2 Extend (s)	Colit		Drot					0.0 NA	Prot		0.0 NA	
Turn Type Protected Disease	Split	NA	Prot							2		
Protected Phases	1	1	1					4	4	3	3	


Lanes, Volumes, Timings C&S Engineers

Future Build PM Peak 16: NYS Route 131 & NYS Route 37 East

02/01/2	023
---------	-----

	٦	-	\mathbf{r}	∢	-	۰.	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases												
Detector Phase	1	1	1					4	4	3	3	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
Minimum Split (s)	12.0	12.0	12.0					12.0	12.0	12.0	12.0	
Total Split (s)	20.0	20.0	20.0					20.0	20.0	20.0	20.0	
Total Split (%)	33.3%	33.3%	33.3%					33.3%	33.3%	33.3%	33.3%	
Maximum Green (s)	13.0	13.0	13.0					13.0	13.0	13.0	13.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
All-Red Time (s)	2.0	2.0	2.0					2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0		0.0	
Total Lost Time (s)	7.0	7.0	7.0					7.0	7.0		7.0	
Lead/Lag								Lag	Lag	Lead	Lead	
Lead-Lag Optimize?								Yes	Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0	3.0	3.0	
Recall Mode	None	None	None					None	None	None	None	
Act Effct Green (s)	16.8	16.8	16.8					8.9	8.9		10.1	
Actuated g/C Ratio	0.41	0.41	0.41					0.22	0.22		0.25	
v/c Ratio	0.10	0.25	0.01					0.00	0.01		0.00	
Control Delay	16.3	15.5	0.0					19.0	0.0		4.3	
Queue Delay	0.0	0.0	0.0					0.0	0.0		0.0	
Total Delay	16.3	15.5	0.0					19.0	0.0		4.3	
LOS	В	В	A					В	A		A	
Approach Delay		15.5						4.8			4.3	
Approach LOS		В						A			A	
Queue Length 50th (ft)	17	44	0					1	0		0	
Queue Length 95th (ft)	49	85	0					5	0		m0	
Internal Link Dist (ft)		399			413			244			148	
Turn Bay Length (ft)	150											
Base Capacity (vph)	772	1417	805					813	805		1544	
Starvation Cap Reductn	0	0	0					0	0		0	
Spillback Cap Reductn	0	0	0					0	0		0	
Storage Cap Reductn	0	0	0					0	0		0	
Reduced v/c Ratio	0.10	0.24	0.01					0.00	0.01		0.00	
Intersection Summary												
	Other											
Cycle Length: 60												
Actuated Cycle Length: 40.8	8											
Natural Cycle: 40												
Control Type: Semi Act-Unc	coord											
Maximum v/c Ratio: 0.31												
Intersection Signal Delay: 1	5.2			In	tersectior	n LOS: B						
Intersection Capacity Utiliza)				of Service	А					
Analysis Period (min) 15												
m Volume for 95th percen	ntile queue	is metere	d by upstr	eam sign	al.							
Splits and Phases: 16: N	YS Route 1	104 0 NIX	2 0 4 - 2	7 🗖 +								

Splits and Phases: 16: NYS Route 131 & NYS Route 37 East

	≯	+	*	4	ţ	•	•	1	*	*	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	A1⊅		۲ ۲	≜ î≽		<u>۲</u>	el 🗧		5	eî.	
Traffic Volume (vph)	38	145	55	155	205	67	78	237	87	100	247	54
Future Volume (vph)	38	145	55	155	205	67	78	237	87	100	247	54
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	200		0	150		0	0		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.95	0.95	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.959			0.963			0.960			0.973	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	3292	0	1770	3350	0	1671	1770	0	1752	1792	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	3292	0	1770	3350	0	1671	1770	0	1752	1792	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		47			42			17			10	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		546			510			451			340	
Travel Time (s)		12.4			11.6			10.3			7.7	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles (%)	2%	6%	3%	2%	5%	0%	8%	2%	6%	3%	3%	4%
Adj. Flow (vph)	43	165	63	176	233	76	89	269	99	114	281	61
Shared Lane Traffic (%)												
Lane Group Flow (vph)	43	228	0	176	309	0	89	368	0	114	342	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	Cl+Ex	Cl+Ex		Cl+Ex	CI+Ex		Cl+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	

Lanes, Volumes, Timings C&S Engineers

	≯	-	$\mathbf{\hat{z}}$	∢	←	*	1	t	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases												
Detector Phase	5	2		1	6		7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	23.1	20.0		10.1	24.1		11.1	24.1		11.1	27.1	
Total Split (s)	15.0	25.0		25.0	35.0		20.0	35.0		20.0	35.0	
Total Split (%)	14.3%	23.8%		23.8%	33.3%		19.0%	33.3%		19.0%	33.3%	
Maximum Green (s)	9.9	19.9		19.9	29.9		13.9	28.9		13.9	28.9	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.6		3.6	3.6	
All-Red Time (s)	1.5	1.5		1.5	1.5		2.5	2.5		2.5	2.5	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.1		5.1	5.1		6.1	6.1		6.1	6.1	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	Max		None	Max		None	None		None	None	
Walk Time (s)		7.0			7.0			7.0			7.0	
Flash Dont Walk (s)		13.0			12.0			9.0			14.0	
Pedestrian Calls (#/hr)		0			0			0			0	
Act Effct Green (s)	7.8	21.7		14.3	34.0		10.2	22.8		11.0	23.4	
Actuated g/C Ratio	0.09	0.24		0.16	0.38		0.11	0.26		0.12	0.26	
v/c Ratio	0.28	0.27		0.62	0.24		0.47	0.79		0.53	0.72	
Control Delay	48.2	26.5		47.8	21.5		49.7	44.8		50.3	40.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	48.2	26.5		47.8	21.5		49.7	44.8		50.3	40.0	
LOS	D	С		D	С		D	D		D	D	
Approach Delay		29.9			31.1			45.8			42.6	
Approach LOS		С			С			D			D	
Queue Length 50th (ft)	25	46		102	63		52	201		66	183	
Queue Length 95th (ft)	61	88		174	108		103	315		127	293	
Internal Link Dist (ft)		466			430			371			260	
Turn Bay Length (ft)	200			200			150					
Base Capacity (vph)	205	834		413	1300		272	611		285	618	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.21	0.27		0.43	0.24		0.33	0.60		0.40	0.55	
Intersection Summary												
Area Type:	Other											
Cycle Length: 105												
Actuated Cycle Length: 89	.3											
Natural Cycle: 90												
Control Type: Semi Act-Un	coord											
Maximum v/c Ratio: 0.79												
Intersection Signal Delay: 3				lr	ntersectior	1 LOS: D						
Intersection Capacity Utiliz	ation 58.9%			IC	CU Level o	of Service	θB					
Analysis Period (min) 15												

Future Build PM Peak 21:

Splits and Phases: 21:

√ Ø1	→ Ø2	Ø3	♦ Ø4
25 s	25 s	20 s	35 s
	← Ø6	▲ Ø7	↓ Ø8
15 s	35 s	20 s	35 s

Future Build PM Peak 26: NYS Route 37 & NYS Route 56/Andrews Street

02/01/2023

	۶	+	7	4	ł	*	•	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ę	1		\$		2	el el		1	el el	
Traffic Volume (vph)	45	101	37	15	147	59	116	159	22	45	96	37
Future Volume (vph)	45	101	37	15	147	59	116	159	22	45	96	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		175	0		0	0		150	125		0
Storage Lanes	0		1	0		0	1		0	1		0
Taper Length (ft)	25			25		-	25		-	25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.964			0.982			0.958	
Flt Protected		0.985			0.997		0.950			0.950		
Satd. Flow (prot)	0	1776	1615	0	1742	0	1703	1796	0	1805	1748	0
Flt Permitted	•	0.844		, , , , , , , , , , , , , , , , , , ,	0.968	Ū	0.950		Ū.	0.632		Ū
Satd. Flow (perm)	0	1522	1615	0	1691	0	1703	1796	0	1201	1748	0
Right Turn on Red	Ŭ	TOLL	Yes	Ŭ	1001	Yes	1100	1100	Yes	1201	1110	Yes
Satd. Flow (RTOR)			121		20	100		9	100		24	100
Link Speed (mph)		30	121		30			30			30	
Link Distance (ft)		490			481			361			360	
Travel Time (s)		11.1			10.9			8.2			8.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	4%	6%	0.50	3%	7%	0.30	6%	4%	3%	0.30	3%	7%
Adj. Flow (vph)	50	112	41	17	163	66	129	177	24	50	107	41
Shared Lane Traffic (%)	50	112		17	105	00	125	111	24	50	107	
Lane Group Flow (vph)	0	162	41	0	246	0	129	201	0	50	148	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	0	rtight	Len	0	rtigrit	Leit	12	rtight	Len	12	Ttight
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	1.00
Number of Detectors	1	2	9	10	2	9	15	2	9	1	2	9
Detector Template	Left	∠ Thru	Right	Left	∠ Thru		Left	Z Thru		Left	Z Thru	
Leading Detector (ft)	20	100	20	20	100		20	100		20	100	
Trailing Detector (ft)	20	0	20	20	0		20	0		20	0	
Detector 1 Position(ft)	0	0	0	0	0		0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	U+⊏X											
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s) Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.0	0.0 94	0.0	0.0	0.0 94		0.0	0.0 94		0.0	94	
		94 6			94 6			94 6			94 6	
Detector 2 Size(ft)								ь Cl+Ex				
Detector 2 Type		CI+Ex			Cl+Ex			OI+EX			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	Derm	0.0	Derm	Derm	0.0		Deat	0.0		nmt	0.0	
Turn Type	Perm	NA	Perm	Perm	NA		Prot	NA		pm+pt	NA	
Protected Phases		4			8		5	2		1	6	

Lanes, Volumes, Timings C&S Engineers

Future Build PM Peak
26: NYS Route 37 & NYS Route 56/Andrews Street

02/01/2023

	٦	-	\mathbf{F}	4	+	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases	4		4	8				2		6		
Detector Phase	4	4	4	8	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	24.5	24.5	24.5	24.5	24.5		11.5	24.5		11.5	24.5	
Total Split (s)	30.0	30.0	30.0	30.0	30.0		20.0	40.0		20.0	40.0	_
Total Split (%)	33.3%	33.3%	33.3%	33.3%	33.3%		22.2%	44.4%		22.2%	44.4%	
Maximum Green (s)	23.5	23.5	23.5	23.5	23.5		13.5	33.5		13.5	33.5	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		5.0	5.0		5.0	5.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5		1.5	1.5		1.5	1.5	_
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.5	6.5		6.5		6.5	6.5		6.5	6.5	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	2.0	2.0	2.0	2.0	2.0		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None		None	None		None	None	
Act Effct Green (s)		14.0	14.0		14.0		10.9	16.2		15.1	10.8	
Actuated g/C Ratio		0.30	0.30		0.30		0.23	0.35		0.32	0.23	
v/c Ratio		0.36	0.07		0.47		0.33	0.32		0.10	0.35	
Control Delay		20.2	0.2		19.8		23.0	16.6		8.9	20.2	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		20.2	0.2		19.8 B		23.0 C	16.6		8.9	20.2	
LOS Approach Delay		C 16.2	А		в 19.8		U	B		А	C 17.3	
Approach Delay		10.2 B			19.0 B			19.1 B				
Approach LOS		ы 41	0		Б 58		34	в 48		7	B 33	
Queue Length 50th (ft)		100	0		138		90	40		23	33 89	
Queue Length 95th (ft) Internal Link Dist (ft)		410	0		401		90	281		23	280	
Turn Bay Length (ft)		410	175		401			201		125	200	
Base Capacity (vph)		838	944		940		634	1260		857	1231	
Starvation Cap Reductn		030	944		940		0.04	0		007	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.19	0.04		0.26		0.20	0.16		0.06	0.12	
		0.13	0.04		0.20		0.20	0.10		0.00	0.12	
Intersection Summary Area Type:	Other											
Cycle Length: 90	Other											
Actuated Cycle Length: 46.	8											
Natural Cycle: 65	.0											
Control Type: Actuated-Un	coordinated	1										
Maximum v/c Ratio: 0.47		•										
Intersection Signal Delay: 1	18.3			Ir	ntersectio							
Intersection Capacity Utiliza					CU Level		Δ					
Analysis Period (min) 15							<i>,</i> ,					

Splits and Phases: 26: NYS Route 37 & NYS Route 56/Andrews Street

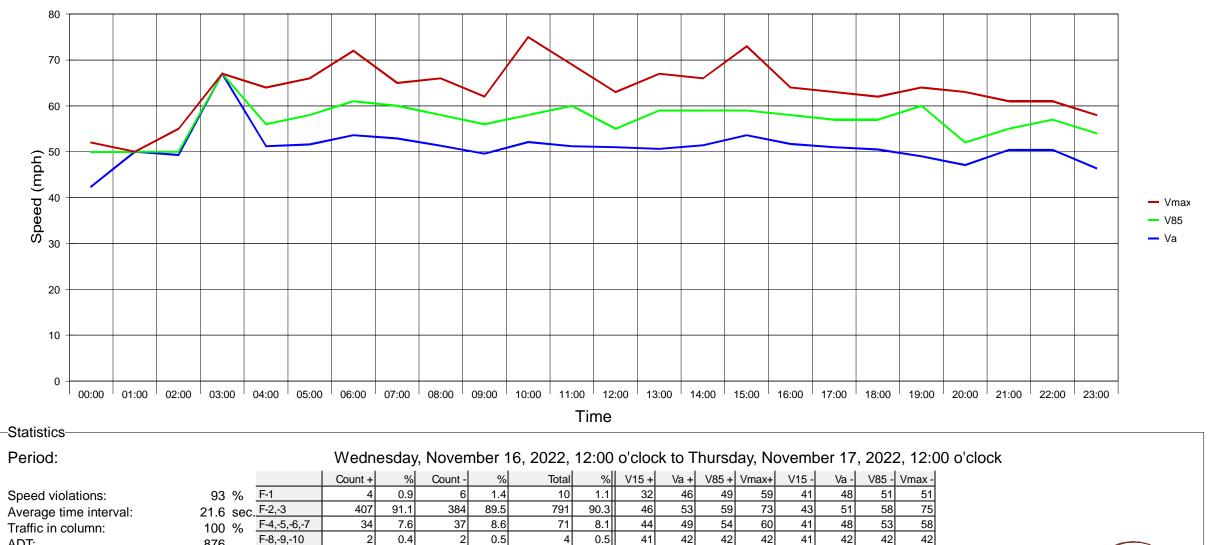
Ø1	↑ ø2	↓ ₀₄					
20 s	40 s	30 s					
▲ Ø5	▼Ø6	Ø8					
20 s	40 s	30 s					

F-8,-9,-10

Total

9 %

0.4


0.5

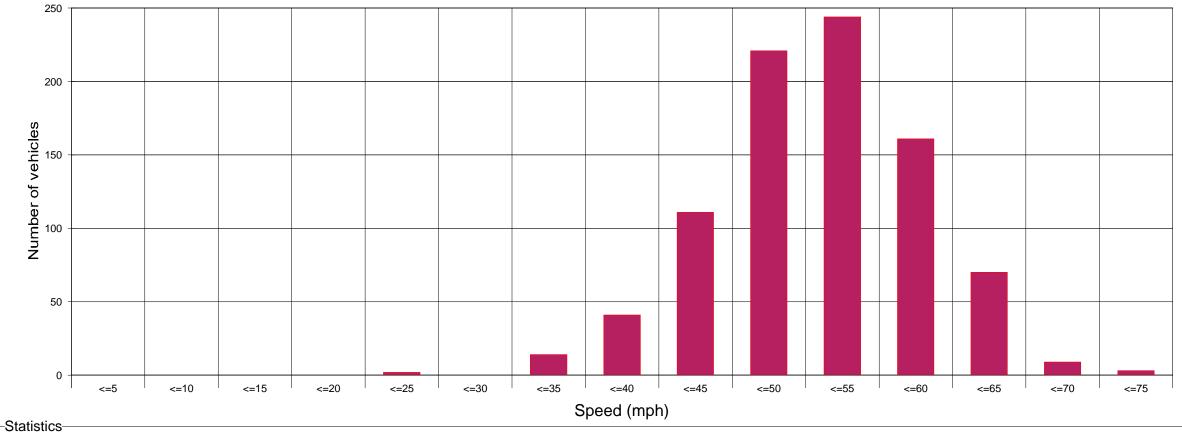
0.5

SIERZEGA

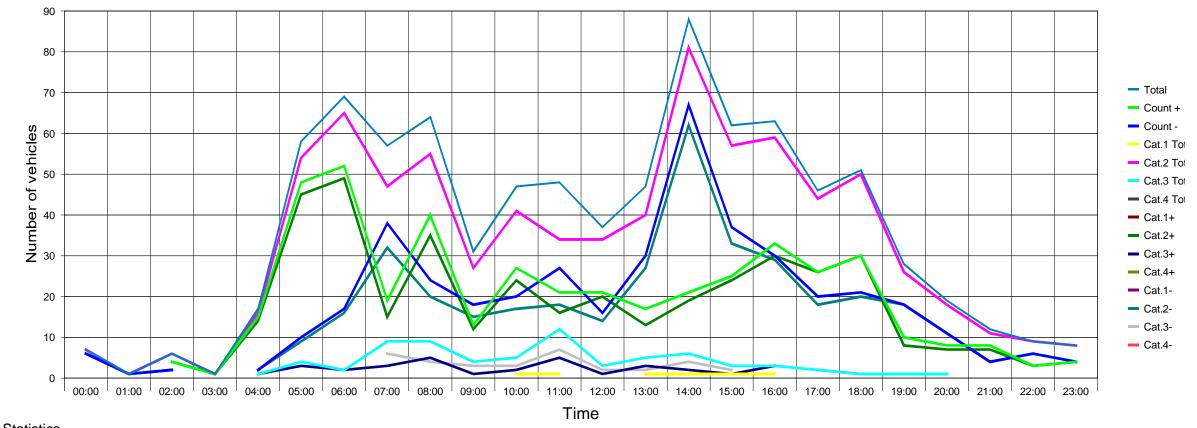
Pontoon Bridge Road; 840 ft SE of NY Route 131; Latitude: 44.961260, Longitude: -74.914705; "+" = WB

ADT:

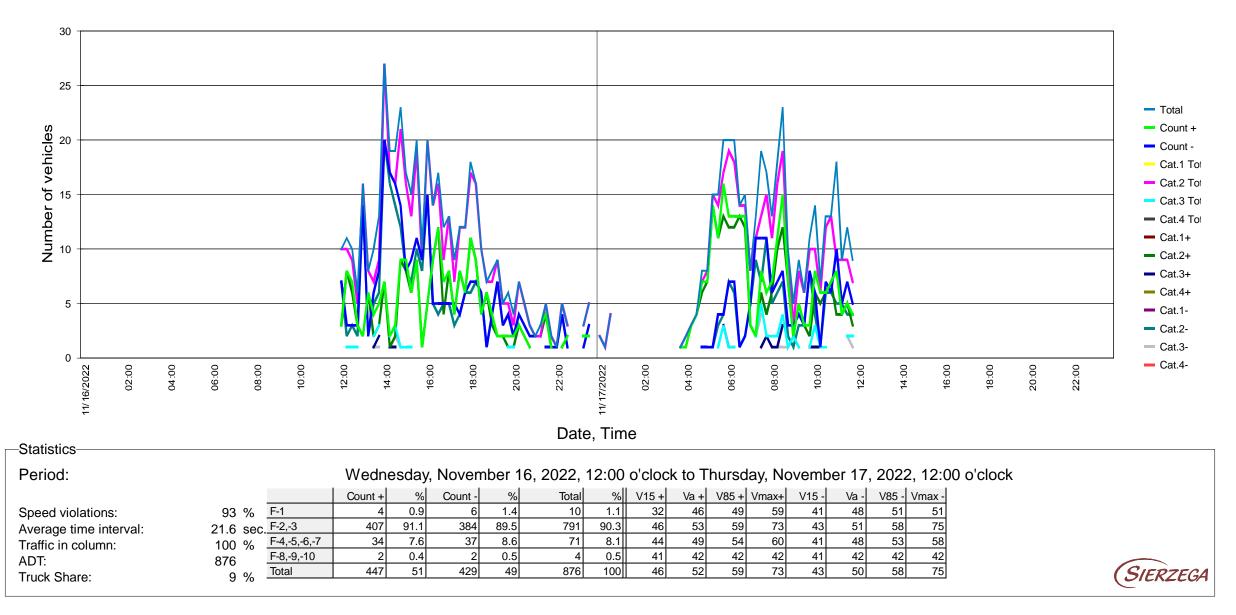
Truck Share:



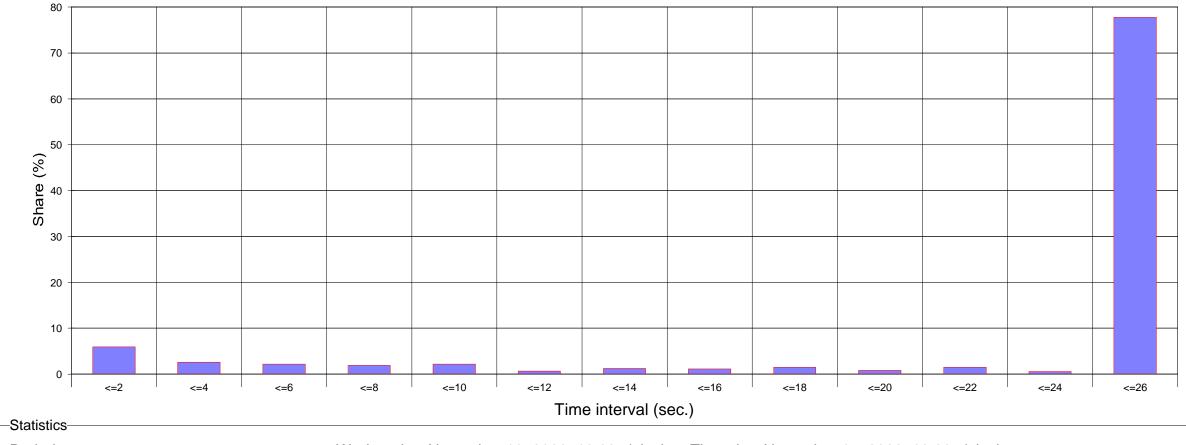
Pontoon Bridge Road; 840 ft SE of NY Route 131; Latitude: 44.961260, Longitude: -74.914705; "+" = WB


Pontoon Bridge Road; 840 ft SE of NY Route 131; Latitude: 44.961260, Longitude: -74.914705; "+" = WB

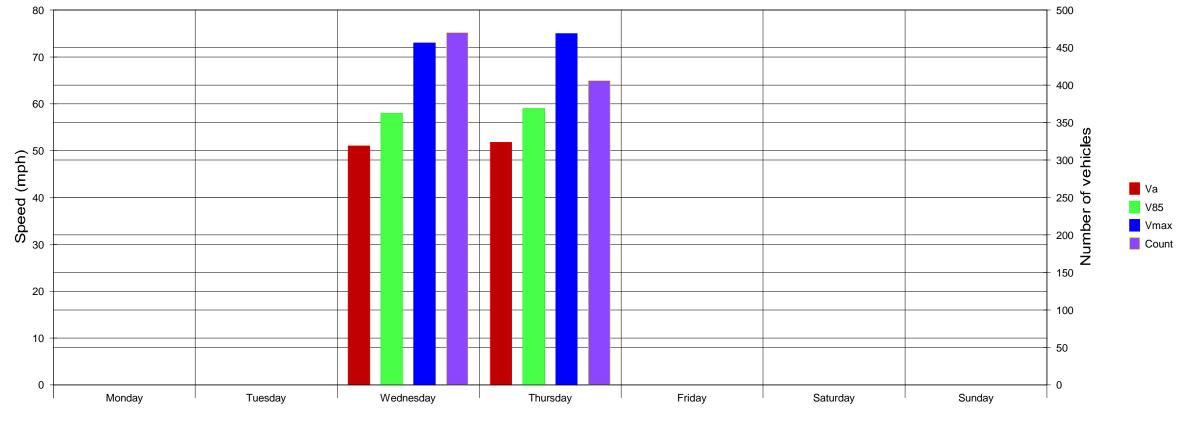
Otatistics																	
Period:			Wedn	esday	, Noven	nber 1	6, 2022, ²	12:00	o'cloc	k to T	hursd	ay, No	vemb	er 17,	2022	2, 12:0	00 o'clock
			Count +	%	Count -	%	Total	%	V15 +	Va +	V85 +	Vmax+	V15 -	Va -	V85 -	Vmax -	
Speed violations:	93 %	F-1	4	0.9	6	1.4	10	1.1	32	46	49	59	41	48	51	51	
Average time interval:	21.6 sec	F-2,-3	407	91.1	384	89.5	791	90.3	46	53	59	73	43	51	58	75	
Traffic in column:	100 %	F-4,-5,-6,-7	34	7.6	37	8.6	71	8.1	44	49	54	60	41	48	53	58	
ADT:	876	F-8,-9,-10	2	0.4	2	0.5	4	0.5	41	42	42	42	41	42	42	42	
Truck Share:	9 %	Total	447	51	429	49	876	100	46	52	59	73	43	50	58	75	(SIERZEGA
Track Chare.	0 /0																

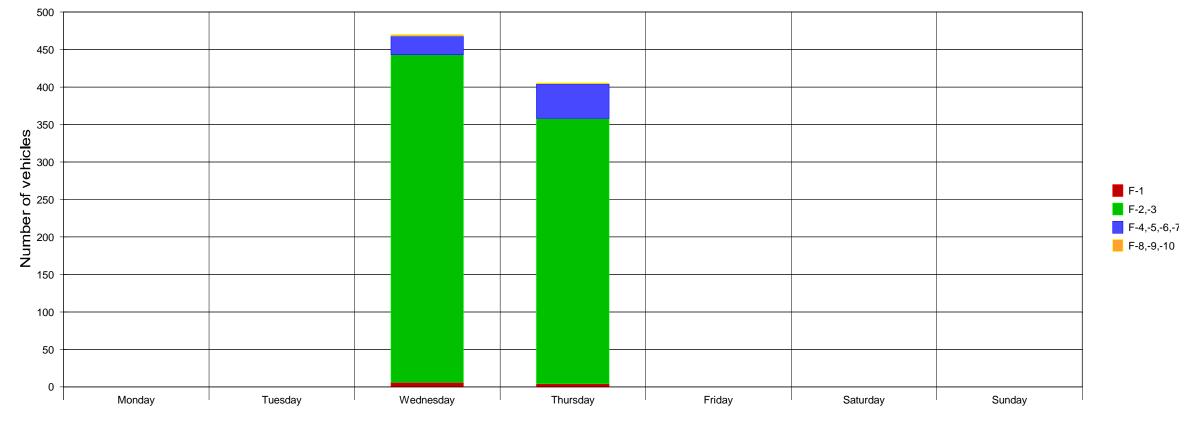


Pontoon Bridge Road; 840 ft SE of NY Route 131; Latitude: 44.961260, Longitude: -74.914705; "+" = WB



-Statistics-																	
Period:	Wednesday, November 16, 2022, 12:00 o'clock to Thursday, November 17, 2022, 12:00 o'clock																
			Count +	%	Count -	%	Total	%	V15 +	Va +	V85 +	Vmax+	V15 -	Va -	V85 -	Vmax -	
Speed violations:	93 %	F-1	4	0.9	6	1.4	10	1.1	32	46	49	59	41	48	51	51	
Average time interval:	21.6 sec.	F-2,-3	407	91.1	384	89.5	791	90.3	46	53	59	73	43	51	58	75	
Traffic in column:		F-4,-5,-6,-7	34	7.6	37	8.6	71	8.1	44	49	54	60	41	48	53	58	
ADT:	876	F-8,-9,-10	2	0.4	2	0.5	4	0.5	41	42	42	42	41	42	42	42	
Truck Share:	9 %	Total	447	51	429	49	876	100	46	52	59	73	43	50	58	75	(SIERZEGA
Tradic Onaro.	5 70																Ciciccor




Period:			Wedn	esday	, Noven	nber ´	6, 2022,	12:00	o'cloc	k to T	hursd	lay, No	ovemb	er 17	, 2022	2, 12:0	00 o'clock
			Count +	%	Count -	%	Total	%	V15 +	Va +	V85 +	Vmax+	V15 -	Va -	V85 -	Vmax -	
Speed violations:	93 %	F-1	4	0.9	6	1.4	10	1.1	32	46	49	59	41	48	51	51	
Average time interval:	21.6 sec	F-2,-3	407	91.1	384	89.5	791	90.3	46	53	59	73	43	51	58	75	
Traffic in column:	100 %	F-4,-5,-6,-7	34	7.6	37	8.6	71	8.1	44	49	54	60	41	48	53	58	
ADT:	876	F-8,-9,-10	2	0.4	2	0.5	4	0.5	41	42	42	42	41	42	42	42	
Truck Share:	9 %	Total	447	51	429	49	876	100	46	52	59	73	43	50	58	75	(SIFRZEGA
Huck Share.	3 70																Cicizcon

Statistics																		
Period:			Wedn	esday	, Noverr	nber 16	6, 2022,	12:00	o'cloc	k to T	hursd	ay, No	vemb	er 17	, 202	2, 12:0	00 o'clock	
			Count +	%	Count -	%	Total	%	V15 +	Va +	V85 +	Vmax+	V15 -	Va -	V85 -	Vmax -		
Speed violations:	93 %	F-1	4	0.9	6	1.4	10	1.1	32	46	49	59	41	48	51	51		
Average time interval:	21.6 sec	F-2,-3	407	91.1	384	89.5	791	90.3	46	53	59	73	43	51	58	75		
Traffic in column:	100 %	F-4,-5,-6,-7	34	7.6	37	8.6	71	8.1	44	49	54	60	41	48	53	58		
ADT:	876	F-8,-9,-10	2	0.4	2	0.5	4	0.5	41	42	42	42	41	42	42	42		
Truck Share:	9 %	Total	447	51	429	49	876	100	46	52	59	73	43	50	58	75	(SIERZ)	EGA

Statistics																	
Period:			Wedne	esday	, Nover	nber 16	6, 2022,	12:00	o'cloc	k to T	hursd	ay, No	vemb	oer 17	, 2022	2, 12:0	00 o'clock
			Count +	%	Count -	%	Total	%	V15 +	Va +	V85 +	Vmax+	V15 -	Va -	V85 -	Vmax -	
Speed violations:	93 %	F-1	4	0.9	6	1.4	10	1.1	32	46	49	59	41	48	51	51	
Average time interval:	21.6 sec.	F-2,-3	407	91.1	384	89.5	791	90.3	46	53	59	73	43	51	58	75	
Traffic in column:		F-4,-5,-6,-7	34	7.6	37	8.6	71	8.1	44	49	54	60	41	48	53	58	
ADT:	876	F-8,-9,-10	2	0.4	2	0.5	4	0.5	41	42	42	42	41	42	42	42	
Truck Share:	9 %	Total	447	51	429	49	876	100	46	52	59	73	43	50	58	75	(SIERZEGA

			F-2,-3					F-4,-5,	-6,-7				F-8,-9,	-10				F-4,-5	5,-6,-7 -	⊦ F-8,-∜	9,-10		Total	:		
	Evaluation:	Count	Share [%]	Va mph	V85 mph	Vmax mph	Count	Share [%]	Va mph	V85 mph	Vmax mph	Count	Share [%]	Va mph	V85 mph	Vmax mph	Count	Share [%]	Va mph	V85 mph	Vmax mph	Count	Share [%]	Va mph	V85 mph	Vmax mph
	Day:	313	90.7	53	59	73	28	8.1	49	54	60	2	0.6	42	42	42	30	8.7	49	54	60	345	39.4	53	59	73
+	Evening:	22	84.6	48	60	64	2	7.7	50	51	51	0	0				2	7.7	50	51	51	26	3	48	55	64
	Night:	71	94.7	52	58	67	4	5.3	50	50	59	0	0				4	5.3	50	50	59	75	8.6	52	58	67
Direction	16 Hours:	335	90.3	53	60	73	30	8.1	49	54	60	2	0.5	42	42	42	32	8.6	49	53	60	371	42.4	52	59	73
Dir	Weekday traffic:	407	91.1	53	59	73	34	7.6	49	54	60	2	0.4	42	42	42	36	8.1	49	54	60	447	51	52	59	73
	Weekend traffic																									
	Total traffic:	407	91.1	53	59	73	34	7.6	49	54	60	2	0.4	42	42	42	36	8.1	49	54	60	447	51	52	59	73
	Day:	321	87.9	51	59	75	36	9.9	48	53	58	2	0.5	42	42	42	38	10.4	48	53	58	365	41.7	51	58	75
Ι.	Evening:	32	100	49	59	63	0	0				0	0				0	0				32	3.7	49	59	63
Ч	Night:	30	96.8	47	52	58	1	3.2	47	47	47	0	0				1	3.2	47	47	47	31	3.5	47	52	58
Scti	16 Hours:	353	88.9	51	59	75	36	9.1	48	53	58	2	0.5	42	42	42	38	9.6	48	53	58	397	45.3	51	58	75
Direction	Weekday traffic:	384	89.5	51	58	75	37	8.6	48	53	58	2	0.5	42	42	42	39	9.1	48	53	58	429	49	50	58	75
	Weekend traffic:																									
	Total traffic:	384	89.5	51	58	75	37	8.6	48	53	58	2	0.5	42	42	42	39	9.1	48	53	58	429	49	50	58	75
	Day:	634	89.3	52	59	75	64	9	48	53	60	4	0.6	42	42	42	68	9.6	48	53	60	710	81.1	52	59	75
	Evening:	54	93.1	49	60	64	2	3.4	50	51	51	0	0				2	3.4	50	51	51	58	6.6	49	59	64
	Night:	101	95.3	50	57	67	5	4.7	50	50	59	0	0				5	4.7	50	50	59	106	12.1	50	57	67
otal	16 Hours:	688	89.6	52	59	75	66	8.6	48	53	60	4	0.5	42	42	42	70	9.1	48	53	60	768	87.7	51	59	75
Ĕ	Weekday traffic:	791	90.3	52	59	75	71	8.1	49	53	60	4	0.5	42	42	42	75	8.6	48	53	60	876	100	51	59	75
	Weekend traffic:																									
	Total traffic:	791	90.3	52	59	75	71	8.1	49	53	60	4	0.5	42	42	42	75	8.6	48	53	60	876	100	51	59	75

Evaluation:								Averag	e Traffic				
	From - To	Days	Dir.	Da	ay:	Ever	ning:	Nig	ght:	16 H	ours:	AI	т
From - To				06:00	- 18:59	19:00 ·	- 21:59	22:00	- 05:59	06:00	- 21:59	00:00	- 23:59
Days					1		1		1		1		1
				AT [veh./h]	AT [veh./13h]	AT [veh./h]	AT [veh./3h]	AT [veh./h]	AT [veh./8h]	AT [veh./h]	AT [veh./16h]	AT [veh./h]	ADT [veh./24h]
			+	27	345	9	26	9	75	23	371	19	447
Weekday traffic:	Mon - Fri	1	-	28	365	11	32	4	31	25	397	18	429
			Т	55	710	19	58	13	106	48	768	36	876
			+										
Weekend traffic	Sat - Sun	0	-										
			Т										
			+	27	345	9	26	9	75	23	371	19	447
Total traffic:		1	-	28	365	11	32	4	31	25	397	18	429
			Т	55	710	19	58	13	106	48	768	36	876

Detailed evaluation Wednesday, November 16, 2022, 12:00 o'clock to Thursday, November 17, 2022, 12:00 o'clock

Evaluation:					Pe	ak hours			K - Factors	
	From - To	Days	Dir.	From mea	an values	Absolute		K6	K16	K200
								06:00 - 08:59	06:00 - 21:59	Peak hour
From - To				Time	[veh./h]	Date, time	[veh./h]	15:00 - 17:59		
			+	05:45	55	11/17/2022, 05:45	55	0.436	0.83	0.123
Weekday traffic:	Mon - Fri	1	-	14:00	67	11/16/2022, 14:00	67	0.387	0.925	0.156
			Т	14:00	88	11/16/2022, 14:00	88	0.412	0.877	0.1
			+							
Weekend traffic	Sat - Sun	0	-							
			Т							
			+	05:45	55	11/17/2022, 05:45	55	0.436	0.83	0.123
Total traffic:		1	-	14:00	67	11/16/2022, 14:00	67	0.387	0.925	0.156
			Т	14:00	88	11/16/2022, 14:00	88	0.412	0.877	0.1

Detailed evaluation Wednesday, November 16, 2022, 12:00 o'clock to Thursday, November 17, 2022, 12:00 o'clock

Legend to K-factors:

K(I) -factor: vehicles in period1+2 / ADT K(J) -factor: vehicles in 16 hrs. period /ADT K(200)-factor: vehicles in peak hour /ADT

LOCATION: F	ontoo Masse	n Bridg na, NY	ge Rd '	NY 13	31										QC DATE:		#: 160 Nov 17	
20 + 1 , 11 , 26 + 14 ,	י קייך	· • _ • • • • •	0 ← 14 5 9 → 29				ak-Hou Ik 15-M							10 ← 100 182 15 → 0			• 20 • 20 • 0 → 1	
0			0		-	S				NUNITIES		-		0 0 0	+ 🕢		• 0 • 0 • 0	
+ 3 N/A + + 7	• • • • •		× N/A → Bridge Rd	1	- -		Bridge Ro	1		- ' NY	131	-					€ ► N/A F	Hourk
Period Beginning At	Left	Thru	bound) Right	U	Left	Thru	ibound) Right	U	Left	Thru	oound) Right	U	Left	Thru	bound) Right	U	Total	Hourly Totals
7:00 AM 7:15 AM 7:30 AM	2 0 1	0 0 1	1 1 6	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 5 0	2 2 4	0 0 0	3 9 7	0 2 5	0 0 0	0 0 0	8 19 24	
7:45 AM 8:00 AM	1 2	0	8 3 4	0	0	2	0 1	0	1 0	4 1	4 4 3	0	7 5 1	5 1 3	0	0 1	24 21 18	72 82
8:15 AM 8:30 AM	2 2 9	0	4 7 2	0	0	1	0	0	0	3	3 3	0	0	1	0	0	18 18 26	81
8:30 AM 8:45 AM	2	4	3	0	0	<u> </u>	0	0	0	2	<u> </u>	0	2	0	0	0	26 14	83 76
		North					bound				ound				bound		То	tal
Peak 15-Min		Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		
Flowrates	Left					12	0	0	0	12	12	0	8	0	0	0	10	04
	Left 36 0	16 4	8 4	0	0 0	12 4	Ő		0	4	0		0	0	0	U	1	.6
Flowrates All Vehicles	36			0					0 0		0 0					Ū	(.6 0 0

LOCATION: F											Wieti		acterin	ining per				09202
CITY/STATE:	Masse	ena, N	/	111 1.														7 2022
50 + 1 , 2 , 12 + 9 .	4 1 3 • • 0.6	ب س ع +	0 ← 65 37 28 → 4				ak-Hou Ik 15-M							0 ← 0 0 0 ← 0			t 0 ← ← 0 f 3.6 →	
	12 1 + 40	۴					Qua DATA TH									- r [
0		→ [0		-	510	₽				\$	-		0 0 0	• 🎸		€ 0 ← 0 € 0	
+ 4 N/A + → 7	• + ►	ر به به به به به	× ∧/A → Bridge Rd		- -	-\$	• Bridge R	4		♠ NY	131	_		 			€ ← N/A €	
15-Min Count Period Beginning At		(North	bound)			(South	bound)			(Eastk	oound)			(Westl	bound)		Total	Hourly Totals
3:00 PM	Left 6	Thru 0	Right 1	U 0	Left 0	Thru 1	Right 0	U 0	Left 0	Thru 1	Right 2	U 0	Left 5	Thru 1	Right 0	U 0	17	
3:15 PM	3	0	0	0	0	1	1	0	0	0	1	0	7	4	0	0	17	
3:30 PM 3:45 PM	5 2	0	2	0	0	0	0	0	0	<u>1</u> 0	3 3	0	7 5	17 10	0	0	35 22	91
4:00 PM	2	1	0	0	0	1	0	0	0	1	2	0	9	6	0	0	22	96
4:15 PM 4:30 PM	5 6	2 1	2 5	0 0	0 0	0 0	0 0	0 0	0 1	0 1	2 3	0 0	3 1	2 1	0 0	0 0	16 19	95 79
4:45 PM	3	1	3	0	0	1	0	0	2	1	2	0	1	2	0	0	19	73
5:00 PM	1	2	2	0	0	0	1	0	0	2	2	0	3	7	0	0	20	71
5:15 PM 5:30 PM	3 2	1 1	2 3	0 0	0 0	2 0	0 0	0 0	0 0	1 0	2 2	0 0	1 3	3 2	0 0	0 0	15 13	70 64
5:45 PM	1	2	2	0	0	1	0	0	0	0	2	0	4	2	0	0	13	64 61
Peak 15-Min	-		bound	-	Ť		bound	-	Ť		ound	-	<u> </u>	West	-	-		
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Тс	tal
All Vehicles	20	0	8	0	0	0	0	0	0	4	12	0	28	68	0	0	1	40
Heavy Trucks Buses Pedestrians	0	0 0	0		0	0 0	0		0	0 0	0		0	0 0	0			0 0
Bicycles Scooters	0	Ō	0		0	Ō	0		0	Ō	0		0	Ō	0			0
Comments:																		

LOCATION: N CITY/STATE:	NY 131	WB											acterini	01	Q	JOB	#: 160	09204 7 2022
395 ← 0 . 0 → 0 ·		ب ب 6 ب 7	0 ← 397 393 4 → 0				eak-Hou k 15-M	in: 3:4		4:00 unts	РМ			4.3 ← 0 0 0 → 0	•		€ 0 ← ← 43 € 0 →	
0		→ [→ [0		-	3						-		0 0 0	• 🎸		€ 0 ← 0 € 0	
+			N/A →		-	8					1	_		N/A			€ ← N/A €	
15-Min Count Period		NY (North	131 bound)				131 bound)				NY 37 bound)				NY 37 bound)		Total	Hourly Totals
Beginning At	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		TULAIS
3:00 PM 3:15 PM	0 1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	2 1	79 86	0 0	0 0	81 88	
3:30 PM 3:45 PM	1	0	0	0	0	0	0	0	0	0	0	0	1	89 103	0	0	91 104	364
4:00 PM	1	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	101	384
4:15 PM 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	2 1	<u>101</u> 75	0	0	103 76	399 384
4:45 PM 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	2	74	0	0	76	356
5:15 PM	0 3	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 2	75 96	0 0	0 0	75 101	330 328
5:30 PM 5:45 PM	1 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 3	74 60	0 0	0 0	76 63	328 315
Peak 15-Min	U	-	bound	U	0	-	bound	J	0	-	ound	J	5		bound	0		
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		tal
All Vehicles Heavy Trucks Buses Pedestrians Bicycles	0 0 0	0 0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0	4 0 0	412 20 0 0	0 0 0	0	2	16 20 0
Scooters Comments:																		

				#: 16009203 Nov 17 2022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Peak-Hour: 8:00 Peak 15-Min: 8:4 Quality	5 AM 9:00 AM	• 🔶 🖊	$\begin{array}{c} 0 \\ 139 \\ 0 \\ \end{array} $
				• 0 • 0 • 0
N/A +		1 ↑ ₩		⊾ ► N/A
15-Min Count NY 131 Period (Northbound) Beginning At Left Thru Right U	NY 131 (Southbound) Left Thru Right U	(Eastbound) Left Thru Right U	WB NY 37 (Westbound) Left Thru Right U	Total Hourly Totals
7:00 AM 0 1 0 0 7:15 AM 0 1 0 0 7:30 AM 0 0 0 0 7:45 AM 0 0 0 0 8:00 AM 0 0 0 0 8:15 AM 0 2 0 0 8:30 AM 0 0 0 0 8:30 AM 1 3 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51 55 47 65 218 53 220 68 233 45 231 79 245
Peak 15-Min Flowrates Left Thru Right U	Southbound Left Thru Right U	Eastbound Left Thru Right U	Westbound Left Thru Right U	Total
All Vehicles41200Heavy Trucks000Buses00Pedestrians00Bicycles00Scooters00	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 300 0 0 0 32 0 0 0 0	316 32 0 0

LOCATION: NY 131/Mall Rd EB SR 37 CITY/STATE: Massena, NY $\begin{array}{c} 1 & 2 \\ 0 & + 2 & 3 \\ 263 & 1 & 0 \\ 263 & 1 & 0 \\ 263 & 1 & 0 \\ 263 & 1 & 0 \\ 267 & 263 & 1 \\ 3 & 3 \\ 3 & 3 \\ \end{array}$ $\begin{array}{c} 1 & 2 \\ 0 & + 0 & 0 \\ 263 & 1 & 0 \\ 267 & 265 \\ \hline \\ 0 & 0 & 1 \\ 3 & 3 \\ \end{array}$ $\begin{array}{c} 1 & 2 \\ 0 & + 0 & 0 \\ 263 & 1 & 0 \\ 267 & 1 & 0 \\ 267 & 1 & 0 \\ 267 & 1 & 0 \\ 267 & 1 & 0 \\ 267 & 1 & 0 \\ 3 & 3 \\ 3 & 3 \\ \end{array}$ $\begin{array}{c} 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	• 0 • 9
Image: state sta	 ◆ 0 ◆ 9
Peak 15-Min: 7:30 AM 7:45 AM 263 + 079 + 0 267 + 2 + 0 267 + 2 + 0 267 + 2 + 0 267 + 2 + 0 3 + 3 + 0 3 + 3 + 0 3 + 3 + 0 4 + 0 + 0 + 0 5 + 0 + 266 0 + 0 + 0 + 0 0 + 0 + 0	◆ 9
$ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \end{array} $	
$\begin{bmatrix} & & & & & & & \\ & & & & & & \\ & & & & $	
15-Min Count Period Beginning At NY 131/Mall Rd (Northbound) NY 131/Mall Rd (Southbound) EB SR 37 (Eastbound) EB SR 37 (Westbound) Tot 15-Min Count Period Beginning At Left Thru Right U Left Thru Tot	otal Hourly Totals
7:00 AM 0 0 1 0 </td <td>22 32 36 51 271 38 267 51 246 56 226 53 218</td>	22 32 36 51 271 38 267 51 246 56 226 53 218
Peak 15-Min Northbound Southbound Eastbound Westbound	Total
Flowrates Left Thru Right U Left Thru Right U Left Thru Right U Left Thru Right U	Total
All Vehicles 0 <t< td=""><td>344 28 0</td></t<>	344 28 0
Bicycles Scooters 0	0

LOCATION: I CITY/STATE:	NY 131	/Mall I	Rd EB											01		JOB	#: 160	09206
SHIJJIAIL.	1110330	a, N1													DAIL.	mu,	1101 11	2022
$\begin{array}{c} 0 & \leftarrow & 0 \\ & & 313 \\ 316 & \leftarrow & 3 \end{array}$	ب ہو ۔ بو بو بو بو	91 + r	0 ← 0 0 − 323			Pea	eak-Hou ak 15-M Data TH			4:15 unts	PM			0 ← 0 26 25 → 0	• 🖌		€ 0 ← ← 0 ₣ 0 →	
0			0		-	*]			l	1	-		0 0 0	• 🎸		€ 0 ← 0 € 0	
← N/A = →	- - + - №		• N/A • →		-						<u>事</u>	-		N/A	+ + + + + + + + + + + + + + + + + + +		€ ← N/A	
15-Min Count Period			/Mall Rd nbound)				/Mall Rd bound)			EB S (Eastb	R 37 ound)				R 37 bound)		Total	Hourly Totals
Beginning At	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		TOLAIS
3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0	3 1 0 1 3 4 2 4 6		0 0 0 0 0 0 0 0 0	2 1 1 2 1 2 1 2 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0	81 79 71 68 87 84 74 60 81	0 0 2 0 0 1 0 1	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	86 82 75 72 91 90 78 66 88	315 320 328 331 325 322 322
5:15 PM 5:30 PM	0 0	3 1	0 3	0 0	0 0	2 0	0 0	0 0	0 0	66 58	0 0	0 0	0 0	0 0	0 0	0 0	71 62	303 287
5:45 PM	0	0	2	0	0	3	0	0	0	61	0	0	0	0	0	0	66	287
Peak 15-Min Flowrates	1-4		bound		4.1		bound		1.4	Eastb			1.4	West			То	otal
inowiales	Left 0	Thru 4	Right 12	U 0	Left 0	Thru 0	Right 0	U 0	Left 0	Thru 348	Right 0	U 0	Left 0	Thru 0	Right 0	U 0	2	64
All Vehicles		4		0	0	0	0	0	0	4	0	0	0	0	0	0		4
All Vehicles Heavy Trucks Buses Pedestrians Bicycles Scooters	0	0 0 0	0 0		0	0 0	0		0	0 0	0		0	0 0	0			0 0

Type of peak nour being reported: Intersec	IOII Peak	Method for	determining peak nour: Total E	_
LOCATION: Main St NY 37				#: 16009208 Nov 17 2022
CITY/STATE: Massena, NY			DATE: INU,	NOV 17 2022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Peak 15-Min: 3:4	D PM 4:00 PM 45 PM 4:00 PM	6.4 🔶 🦰 -	• 0 • 32 • 5 • 25 • 53
	38 ┥ ↓	₽ ← ←	0 + (510) -	€ 0 ← 0 € 0
+ + + N/A + + + N/A + + + + N/A + + + + + + N/A + + + + + + + + + + + + + + + + + + +	 → ▼	1 ो ।		⊾ ► N/A
15-Min Count Main St Period (Northbound)	Main St	NY 37	NY 37	– Hourby
	(Southbound) J Left Thru Right U	(Eastbound) Left Thru Right U	(Westbound) Left Thru Right U	Total Hourly Totals
3:00 PM 20 55 19 3:15 PM 16 48 15 3:30 PM 18 61 23	26 1111 Kight 0 0 26 81 12 0 0 22 65 13 0 0 21 57 10 0 0 33 61 12 0	15 37 23 0 10 28 12 0 12 37 16 0 7 39 15 0	40 42 15 0 37 50 14 0 36 52 18 0 49 58 23 0	385 330 361 411 1487
4:15 PM 17 51 19 4:30 PM 18 60 23 4:45 PM 19 59 21 5:00 PM 21 50 16 5:15 PM 15 54 25 5:30 PM 15 54 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	346 1448 307 1425 339 1403 313 1305 298 1257 299 1249 285 1195 259 1141
Peak 15-Min Northbound	Southbound	Eastbound	Westbound	Total
Flowrates Left Thru Right U	J Left Thru Right U	Left Thru Right U	Left Thru Right U	Total
All Vehicles 100 268 88 0 Heavy Trucks 8 0 4 Buses Pedestrians 0	4 4 0 0	28 156 60 0 0 4 0 4	196 232 92 0 12 16 0 0	1644 52 4
Bicycles 0 0 0 Scooters	0 0 0	0 0 0	0 0 0	0

Comments:

Report generated on 11/29/2022 2:35 PM

LOCATION: I CITY/STATE:	Main S	t NY	37											01	QC DATE:	JOB	#: 160	09207
$212 \leftrightarrow 31$ 165 $260 \Rightarrow 64$	→ 02 → 02 → 02 → 1 71 21 +	89 + 7 79 +	23 ← 194 116 55 → 308			Pea	ak-Hour k 15-Mi	n: 7:1	5 AM -	- 7:30				35 ← 32 176 2.7 → 4.7	28 09	r 127	13 ↔ 129 273 → 1	
1		367 →	4		_	3				UNITIES	<u></u>			0	•		€ 0 ← 0 € 0	
د ← ♦ ۸/۸ ۲ ←			◆ N/A ◆		_	 ₽			•] ∱ [E			N/A			t ► N/A	
15-Min Count Period Beginning At	Left		in St bound) Right	U	Left		n St bound) Right	U	Left	NY (Eastb Thru		U	Left		′ 37 bound) Right	U	Total	Hourly Totals
7:00 AM	13	36	12	0	8	32	8	0	3	37	11	0	17	33	10	0	220	
7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM	21 19 16 15 15	47 46 73 51 56	13 18 25 23 21	0 0 0 0	16 17 20 11 21	57 39 33 36 35	13 2 3 7 11	0 0 0 0	5 12 7 7 12	55 42 30 38 34	20 17 14 13 9	0 0 0 0	6 15 18 16 26	42 27 22 25 22	6 7 6 4 12	0 0 0 0	301 261 267 246 274	1049 1075 1048
8:30 AM 8:45 AM	10 10	51 53	25 27	0 0	21 17	49 44	2 2	0 0	7 5	33 27	16 12	0 0	20 26	32 26	11 4	0 0	277 253	1064 1050
Peak 15-Min			bound			South				Eastb					bound			Ì
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	10	tal
All Vehicles Heavy Trucks Buses Pedestrians Bicycles Scooters	84 0 0	188 4 0 0	52 4 0	0	64 20 0	228 4 0 0	52 0 0	0	20 0 0	220 68 0 0	80 0 0	0	24 4 0	168 12 12 0	24 4 0	0	1:	204 20 .2 D
Comments:																		

LOCATION: A CITY/STATE:	Andrev	vs St ena, NY	NY 37 ′											01			#: 160 Nov 17	09209 7 2022
144 🔶 45 ,	206 + 36 155 + •	Ļ	14 🗲 138				ak-Hou k 15-Mi						1	3.2 + 2.2	6.8 • 16.7 3.3 • •	4	. 0 + 9	9.4
112 → 57 ⁻		_ م	74 50 → 229				Qual						7	125 → 18	י י ר	<u>_</u>	• 14.9 • 4 → 1	12.2
0		• [•] • [0		-	*	∲				•			0	• 🎸		■ 0 ■ 0 ■ 0	
+ d N/A ≠ + T			► N/A ►		_	ر_ ج لا]				B.			N/A	· · · · · · · · · · · · · · · · · · ·		► N/A	
15-Min Count Period Beginning At	Left	Andre (North Thru		U	Left		ews St bound) Right	U	Left		' 37 bound) Right	U	Left		′ 37 bound) Right	U	Total	Hourly Totals
7:00 AM	7	26	22	0	3	51	10	0	13	35	16	0	13	16	3	0	215	
7:15 AM 7:30 AM	8	43 23	32 18	0	1 6	36 33	8 5	0	16 6	31 30	10 15	0	18 11	16 26	5 2	0	224 183	022
7:45 AM 8:00 AM	11 17	47 27	30 12 21	0	5 0 1	35 30 27	13 8 0	0	10 8 16	16 32	16 5	0	8 14 14	16 18 17	4 5 7	0	211 176	833 794 765
8:15 AM 8:30 AM 8:45 AM	9 8 13	35 10 21	21 19 16	0 0 0	1 1 1	37 23 19	9 6 10	0 0 0	16 7 12	24 25 30	5 10 3	0 0 0	14 19 14	17 23 16	7 4 5	0 0 0	195 155 160	765 737 686
8:45 AIM Peak 15-Min	12	21 Northl		U	<u> </u>		bound	U	12		ound	0	14		5 bound	U		
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	То	tal
All Vehicles	32 0	172 8	128 20	0	4 0	144 8	32 4	0	64 0	124 8	40 0	0	72 0	64 16	20 0	0		96 54
Heavy Trucks Buses Pedestrians Bicycles Scooters	0	0 0	0		0	0 0	0		0	0 0	0		0	0 0	0			D D

LOCATION: A CITY/STATE:	Andrev Masse	vs St ena, N\	NY 37												Q	JOB		09210 7 2022
260 ← 45 _ 96 ● 178 <u>→ 37 ⁻</u>	• له و ب 09 •	ب + <mark>0</mark> ج	22 ← 292 154 116 ← 173			Pea	ak-Hou k 15-M			4:00 unts	РМ			69 ← 4.4 63 4.5 → 0	• , , , ,		€ 0 ↔ ← 7.1 < 3.4 →	
0		→ [→ [0		-	3	∳				₽	-		0 0 0	•		€ 0 ← 0 € 0	
و N/A →	N/.		► N/A ►		-]				<u>\$</u>	-		N/A			€ ← N/A	
15-Min Count Period			ews St bound)				bound)				' 37 oound)			(West	′ 37 bound)		Total	Hourly Totals
Beginning At	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		
3:00 PM 3:15 PM	10 8	25 21	17 7	0	6 3	35 32	17 21	0 0	8 15	22 19	14 5	0 0	23 36	37 38	6 6	0 0	220 211	
3:30 PM	9	45 42	20	0	2	37 43	9 14	0	7 11	23 19	6 12	0	20	35	5	0	218	000
3:45 PM 4:00 PM	14 16	27	<u>18</u> 17	0	5	35	14	0	11	35	12	0	28 32	48 33	5	0	260 246	909 935
4:15 PM	9	33	14	0	3	32	10	0	7	21	7	0	21	34	5	0	196	920
4:30 PM 4:45 PM	15 8	39 38	17 14	0 0	1 7	24 24	8 14	0 0	11 8	24 24	9 10	0 0	24 22	45 28	2 3	0 0	219 200	921 861
5:00 PM	13	38	21	0	2	35	8	0	13	19	14	0	21	34	4	0	222	837
5:15 PM 5:30 PM	12 11	22 34	18 23	0 0	4 2	17 18	15 3	0 0	8 12	27 23	8 6	0 0	19 25	29 25	3 3	0 0	182 185	823 789
5:45 PM	8	27	15	0	5	15	9	0	9	15	5	0	13	27	1	0	149	738
Peak 15-Min		North	bound			South	bound			Eastb	ound			West	bound		То	otal
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		
All Vehicles Heavy Trucks Buses Pedestrians Bicycles	56 12 0	168 0 0 0	72 0 0	0	20 0 0	172 8 0 0	56 0 0	0	44 0 0	76 0 0 0	48 0 0	0	112 8 0	192 12 0 0	24 0 0	0	2	040 10 0 0
Scooters Comments:																		

LOCATION: I CITY/STATE:															QC DATE:		#: 1600 Nov 17	
44 ← 16 20 36 → 0	→ 0.9	ب ب 4 ج	6 ← 38 32 0 → 24			Pea	ak-Hour k 15-Mi	in: 7:4		8:00	AM			5.9 ← 188 25 22 → 0	+ 🖊	ب _ ب ب م	. 0 ← 1 • 18.8 • 0 → 2	
0		• [•] • [0		-	500	Ι.			(907 •			0.0	•		0 0 7 0	
→ N/A = →			◆ N/A ◆		-	<u>+</u>				ſ							• N/A	
15-Min Count Period Beginning At	1.04		bound)		1.04	(South	131 bound)		1.04	(Eastk	42 bound)		1.04	(West	42 bound)		Total	Hourly Totals
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Thru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0	U 0 0 0 0 0 0 0 0 0	Left 0 2 0 2 2 2 2 0 3 3	Thru 0 0 0 0 0 0 0 0 0	Right 2 7 3 3 3 3 3 3 3 2	U 0 0 0 0 0 0 0 0 0	Left 8 3 1 5 3 5 3 4	Thru 4 5 4 3 4 9 3	Right 0	U 0 1 0 0 0 0 0 0 0	Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Thru 6 8 2 10 10 6 6 6 7	Right 0 2 1 0 3 0	U 0 0 0 0 0 0 0 0 0	20 29 12 24 22 20 24 19	<mark>85</mark> 87 78 90 85
Peak 15-Min Flowrates	Left	North Thru	bound Right	U	Left	South Thru	bound Right	U	Left	Eastb Thru	oound Right	U	Left	Westl Thru	oound Right	U	То	tal
All Vehicles Heavy Trucks Buses	0	0 0	0	0	0	0 0 0	12 0	0	20 0	16 4 0	0	0	0 0	40 8 0	8 0	0	1	16 .2)
Pedestrians Bicycles Scooters	0	0 0	0		0	0	0		0	0	0		0	0	0		()

LOCATION: NY 131 -- CR 42 QC JOB #: 16009213 DATE: Thu, Nov 17 2022 CITY/STATE: Massena, NY Peak-Hour: 3:30 PM -- 4:30 PM Peak 15-Min: 3:30 PM -- 3:45 PM ÷ ŧ ŧ ŧ 16.7 ι. 2.8 + 25 + 143 🛥 8 49 € 0 € 8.2 £ t 0.51 11.5 🜩 **+** 8.7 + ÷ 14.7 → 0 飞 € 0 → 12.5 34 🔸 ŧ ŧ r ŧ ŧ ŧ ŧ Quality Counts Λ Ω DATA THAT DRIVES COMMUNITIES L. . 0 🖌 **t** 0 A ÷ **f** 0 c ŧ N/A N/A . t و t ÷. £ ← N/A N/A 🛥 N/A N/A ⇒ a STOP ç ŧ r ŧ C N/A N/A ÷ ŧ NY 131 NY 131 CR 42 CR 42 15-Min Count Period Hourly Totals (Northbound) (Southbound) (Eastbound) (Westbound) Total Beginning At Left Thru Right υ Left Thru Right υ Left Thru Right υ Left Thru Right υ 17 3:00 PM 5 3:15 PM 3:30 PM 5 3:45 PM 0 4:00 PM 4:15 PM 18 4:30 PM 4:45 PM 5:00 PM 8 5:15 PM 5:30 PM 5:45 PM Northbound Southbound Eastbound Westbound Peak 15-Min Flowrates Total Left Thru Right U Left Thru Right U Left Thru Right U Left Thru Right υ All Vehicles 0 8 12 0 õ Heavy Trucks Buses 0 0 Pedestrians 0 õ õ Bicycles Scooters Comments:

Report generated on 11/29/2022 2:35 PM

Appendix C Collision Data

					oject Name: ect Number:	Hydrogen Elec Facility Z73.001.001	trolysis
CITY/TOWN : Massena				CO	UNT DATE :	December 202	22
REGION: 7	UNSIGN	IALIZED :			SIGNA	LIZED :	X
			INTERSEC	TION DA	ATA		
MAJOR STREET :	NYS Route 37						
MINOR STREET(S) :	NYS Route 56						
	Andrews St						
INTERSECTION DIAGRAM (Label Approaches)	↑ North	NYS 37		Andrews	St	NYS 37	
				NYS 56			
		AN	NUAL D		FFIC VOLUN	IES	
APPROACH :	1	2	3		4	5	Total Daily Approach
DIRECTION :	EB	WB	SB		NB		Volume
APPROACH DAILY VOLUMES:	1,370	2,920	2,21	0	4,170		10,670
		INTERSECT	TION ADT	(V) = TC VOLUMI	DTAL DAILY / E:	APPROACH	10,670
TOTAL # OF CRASHES :	8	# OF YEARS :	5	AV	ERAGE # OF YEAR	CRASHES PER (A) :	1.60
CRASH RATE CALCULA	ATION :	0.41	R	ATE =	(A*1,0 (V*	00,000) 365)	
Comments : NYSDOT ave	erage accident	rate for urban,	four-legg	ged, signa	l w/ left tur	n is 0.26 acc/m	ev.

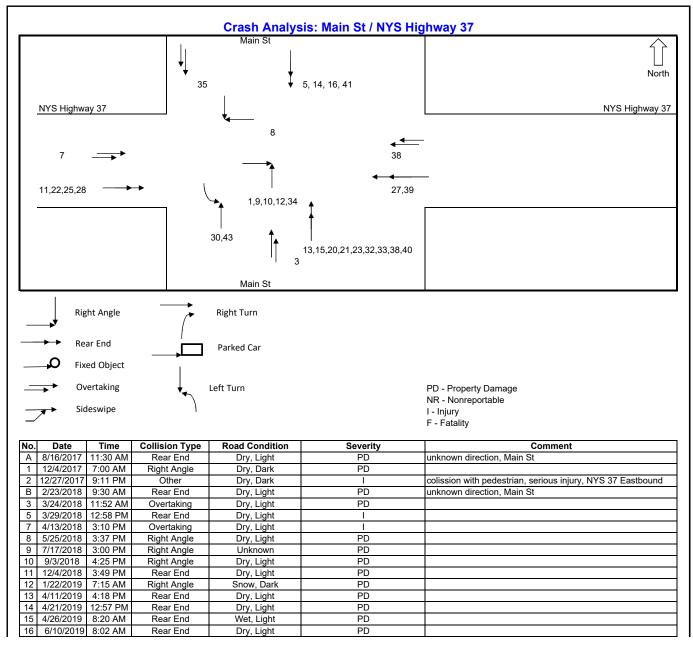
				Р	Project Nar roject Numb	Hydrogen Ele ne: Facility er: Z73.001.001	
CITY/TOWN : Massena					COUNT DAT	E : December 20	22
REGION: 7	UNSIGN	ALIZED :			SIG	NALIZED :	X
			INTERSE	TION	I DATA		
MAJOR STREET :	NYS Route 37						
MINOR STREET(S) :	Main St						
INTERSECTION DIAGRAM (Label Approaches)	↑ North	NYS 37			ain St	NYS 37	
						LIMES	
APPROACH :	1	2	3		4	5	Total Daily
DIRECTION :	EB	SB	NB		WB		Approach Volume
APPROACH DAILY VOLUMES:	2,330	4,010	3,97	0	4,170		14,480
		INTERSECT	TION ADT		= TOTAL DAI UME :	LY APPROACH	14,480
TOTAL # OF CRASHES :	38	# OF YEARS :	5			OF CRASHES PER AR (A) :	7.60
CRASH RATE CALCULA	ATION :	1.44	R	ATE =		<u>1,000,000)</u> V * 365)	

				Р		t Name: Iumber:	Hydrogen Elec Facility Z73.001.001	trolysis
CITY/TOWN : Massena					COUNT	DATE :	December 202	2
REGION: 7	UNSIGN	ALIZED :	Х]	SIGNAL	IZED :	
			INTERSE	CTION	I DATA			
MAJOR STREET :	NYS Route 131	L						
MINOR STREET(S) :	Pontoon Bridg	e Rd						
INTERSECTION	↑ North				toon ge Rd			
DIAGRAM (Label Approaches)								
		NYS 131					NYS 131	
					toon ge Rd			
		AN	INUAL D	AILY T	RAFFIC	VOLUM	ES	
APPROACH :	1	2	3			4	5	Total Daily Approach
DIRECTION :	EB	WB	SB		Ν	IВ		Volume
APPROACH DAILY VOLUMES:	120	650	40		1	50		960
		INTERSECT	ION ADT		= TOTAL UME :	DAILY A	APPROACH	960
TOTAL # OF CRASHES :	1	# OF YEARS :	5		AVERA	GE # OF YEAR	CRASHES PER	0.20
CRASH RATE CALCUL	ATION :	0.57	F	RATE =		(A*1,00 (V*	00,000) 365)	
Comments : NYSDOT ave	erage accident	rate for urban,	four-leg	ged, si	gnal w/	left turr	n is 0.19 acc/me	2V.

				Pr		t Name:	Hydrogen Elec Facility Z73.001.001	trolysis
CITY/TOWN : Massena					COUN	r date : .	December 202	2
REGION: 7	UNSIGN	ALIZED :				SIGNAL	IZED :	X
			INTERSEC	TION	DATA			
MAJOR STREET :	NYS Route 37							
MINOR STREET(S) :	NYS 131							
	Mall Rd							
	Ramps							
INTERSECTION DIAGRAM	♦ North			NYS	131			
(Label Approaches)		NYS 37					NYS 37	
		Ramp		Mal	l Rd	Rar	np	
		AN	INUAL D	AILY T	RAFFIC	VOLUM	ES	
APPROACH :	1	2	3			4	5	Total Daily Approach
DIRECTION :	EB	SB	NB					Volume
APPROACH DAILY VOLUMES:	3,100	30	70					3,200
		INTERSECT	ION ADT		= TOTA JME :	l daily a	APPROACH	3,200
TOTAL # OF CRASHES :	11	# OF YEARS :	5		AVERA	AGE # OF YEAR	CRASHES PER (A) :	2.20
CRASH RATE CALCULA	ATION :	1.88	R	ATE =		(A*1,00 (V*		
Comments : NYSDOT ave	erage accident	rate for urban,	four-legg	ged, sig	gnal w,	left turr	n is 0.26 acc/me	2V.

			Ρ	Project Name: roject Number:		trolysis
CITY/TOWN : Massena				COUNT DATE :	December 202	22
REGION: 7	UNSIGN	ALIZED :		SIGNA	LIZED :	Х
			NTERSECTION	DATA		
MAJOR STREET :	NYS Route 82	5 (Hill Rd)				
MINOR STREET(S) :	Brooks Rd/Flo	yd Ave				
INTERSECTION DIAGRAM (Label Approaches)	North	Ramp VYS 37			NYS 37	
APPROACH :	1	2	3	4	5	Total Daily
DIRECTION :	WB	SB	NB			Approach Volume
APPROACH DAILY VOLUMES:	381	0	3			384
		INTERSECT		= TOTAL DAILY / UME :	APPROACH	384
TOTAL # OF CRASHES :	0	# OF YEARS :	5	AVERAGE # OF YEAR		0.00
CRASH RATE CALCUL	ATION :	0.00	RATE =	<u>(A*1,0</u> (V*	00,000) 365)	
Comments : NYSDOT ave		rate for a four l rection is belov			turn lane is 0.2	6.

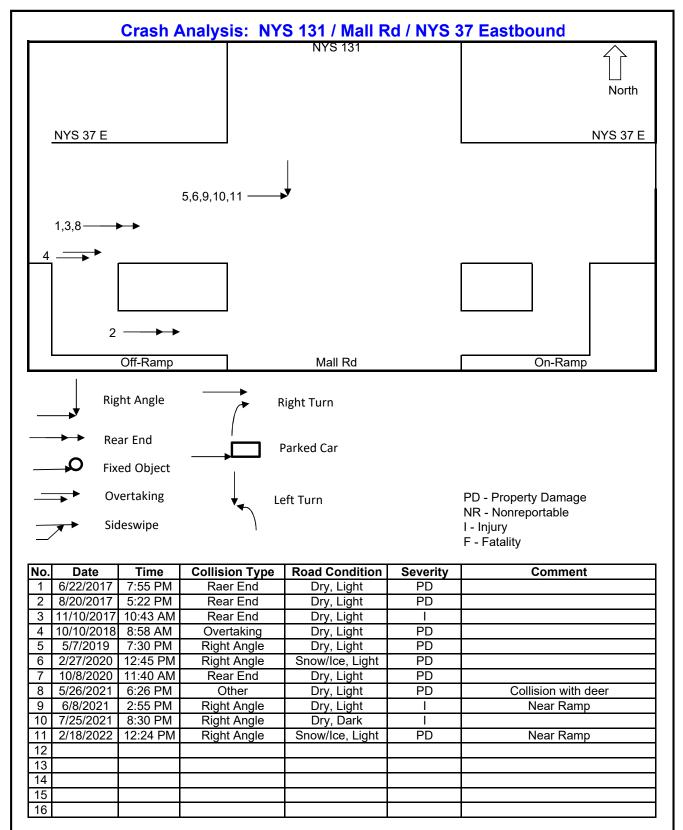
			Ρ	Project Name: roject Number:		trolysis
CITY/TOWN : Masssena				COUNT DATE :	December 202	22
REGION: 7	UNSIGN	ALIZED :	X	SIGNAI	LIZED :	
			INTERSECTION	DATA		
MAJOR STREET :	NYS Route 132	1				
MINOR STREET(S) :	NYS Route 42					
INTERSECTION DIAGRAM (Label Approaches)	North	NYS 42		131	NYS 42	
APPROACH :	1	2	3	4	5	Total Daily
DIRECTION :	EB	WB	SB	NB		Approach Volume
APPROACH DAILY VOLUMES:	320	470	1,010	0		1,800
		INTERSECT		= TOTAL DAILY A UME :	APPROACH	1,800
TOTAL # OF CRASHES :	0	# OF YEARS :	5	AVERAGE # OF YEAR		0.00
CRASH RATE CALCUL	ATION :	0.00	RATE =	(A*1,00 (V*	00,000) 365)	
Comments : NYSDOT ave			legged, sign co v the statewide		ction is 0.31.	


	Project Hydrogen Electrolysis Facility	Sheet	1 ^{of} 1
	Traffic Impact Study	File #	Z73.001.001
	Prepared by L. Mussi	Date	01/11/2023
COMPANIES	Checked by K. Wessel	Date	01/31/2023

Cr	ash Analys	is: NYS High		rews St /	NYS Highway 56
			Andrews St		
					 North
					, itorat
					1
NYS Hi	ghway 37				NYS Highway 37
	<u></u>				ĭ í
		4			
	1				
			-		
	2,7	√	_		
		3,5			
			♠		·
			4		
					1
					1
1			6,8		1
					1
			NVC Liabway 56		
			NYS Highway 56		<u></u>
		>			
l ↓	Right Angle	•	Right Turn		
		[
	Rear End				
	Near Lina	_	Parked Car		
QQ	Fixed Object				
	Overtaking	↓_	Left Turn		PD - Property Damage
		•			NR - Nonreportable
	Sideswipe	1			I - Injury
					F - Fatality
No. Date		Collision Type	Road Condition	Severity	Comment
1 1/25/20		Overtaking	Snow, Dark	PD	
2 12/4/20	019 4:32 PM	Rear End Right Angle	Wet, Dark	PD	Į
	3 6/8/2020 1:57 PM		Dry, Light	PD	l
4 6/10/20		Left Turn	Dry, Light	PD	Į
5 10/7/20		Left Turn	Wet, Light	PD	4
6 1/9/20		Rear End	Dry, Light	PD	ļ
7 1/15/20		Rear End	Dry, Dark	PD	l
8 5/11/20	022 2:16 PM	Rear End	Dry, Light	PD	

www.cscos.com | (877) CS-SOLVE

Project H	ydrogen Electrolysis Facility	Sheet	1	of	1
Traffic Impact Study		File #	Z73.001.001		
Prepared by	L. Mussi	Date	0	1/11/202	23
Checked by	K. Wessel	Date	0	1/31/20:	23



	Project Hydrogen Electrolysis Facility	Sheet	1 ^{of} 1
COMPANIES	Traffic Impact Study	File #	Z73.001.001
	Prepared by L. Mussi	Date	01/11/2023
	Checked by K. Wessel	Date	01/31/2023

Crash Analysis: Pontoon Bridge Rd and NYS Highway 131					
		Pontoon Bridge Rd		1 North	
<u>NYS 131</u>				NYS 131	
		1			
		Pontoon Bridge Rd			
Right Angle		Right Turn			
Rear End		Parked Car			
Overtaking Sideswipe	•	Left Turn		PD - Property Damage NR - Nonreportable I - Injury F - Fatality	
No. Date Time	Collision Type	Road Condition	Severity	Comment	
1 1/13/2021 9:01 AM 2	Right Angle	Dry, Light	PD		
3 4					
5					
6 7					
8					
9 10					
11					
12 13					
14					
15 16					
				•	

www.cscos.com | (877) CS-SOLVE

	Project Hydrogen Electrolysis Facility	Sheet	1 ^{of} 1
	Traffic Impact Study		Z73.001.001
	Prepared by L. Mussi	Date	01/11/2023
COMPANIES	Checked by K. Wessel	Date	01/31/2023

www.cscos.com | (877) CS-SOLVE